Transjugular intrahepatic portosystemic shunts

From WikiAnesthesia
(Redirected from TIPS)
Transjugular intrahepatic portosystemic shunts
Anesthesia type

General or MAC sedation

Airway

ETT

Lines and access

Two large PIV, consider central line

Monitors

Standard Monitors, Arterial Line, possible Central Line

Primary anesthetic considerations
Preoperative

Coagulopathies from liver dysfunction, possible full stomach,

Intraoperative

Possible large blood loss, altered drug effect, complete heart block

Postoperative

Hepatic encephalopathy, PV thrombosis, hepatic infarction, hemorrhage, fluid/electrolyte imbalance.

Article quality
Editor rating
Comprehensive
User likes
1

Insertion of low-resistance percutaneous shunt between the portal and systemic venous circulations.

TIPS is a procedure for patients with portal hypertension (typically from cirrhosis) and associated large gastric/esophageal varices or ascites. A percutaneous shunt between the portal and systemic circulations is created. An esophageal variceal bleed has a high mortality (30-80%).[1]

As the name suggests, the right IJ is accessed and a guidewire/catheter is inserted in the right hepatic vein. Carbon dioxide is wedged in the hepatic veins, through the sinusoids, and into the portal vein, thus creating a map. A stiff wire then guides the metallic introducer (needle) through the hepatic vein into the portal vein. This tract is dilated with an angioplasty balloon and a self-expanding stent is deployed. This creates a shunt from the high pressure portal system into the low pressure central venous system.[2] This drop in portal pressure lowers the risk of esophageal variceal bleeding and decreases ascites. [3] TIPS provides a survival benefit in patients with large volume, diuretic resistant ascites that necessitates paracentesis[4] as well as when used to control variceal bleeding. [5]

Preoperative management

Patient evaluation

System Considerations
Neurologic Hepatic Encephalopathy may be present and these patients are very sensitive to hypnotics and narcotics.
Cardiovascular Often hyperdynamic low PVR. Cardiomyopathy and CAD common in this population.
Pulmonary Large volume ascites may lead to low FRC, atelectasis, pulmonary shunting and hypoxemia. Hepatopulmonary syndrome may be present. Pleural effusions common. Hepatic encephalopathy may cause hyperventilation, hypocapnia, and respiratory alkalosis with metabolic compensation.
Gastrointestinal Possible full stomach.
Hematologic May need to correct coagulopathies due to liver dysfunction. May require PRBC/FFP/CRYO/PLTs intraoperatively. Ideally plt>50, INR<1.5
Renal Possible hepatorenal syndrome
Other If ascites drained, must be replaced with 25% albumin (8g per 2.5L drained)

Labs and studies

  • T&S
  • T&C 2 units PRBC
  • CBC, complete blood count
  • CMP, comprehensive metabolic panel
  • Coagulation panel (PT/INR, PTT, Fibrinogen)
  • Thromboelastogram (TEG, ROTEM) if indicated
  • Pre-op Echocardiography preferred
  • Further cardiopulmonary studies as indicated

Operating room setup

  • Fluid/blood warmer, LR/NS/PL/Albumin, possible rapid infuser (e.g. Belmont or Level 1)
  • Arterial line, CVP as indicated

Patient preparation and premedication

  • Consider reversing any coagulopathies
  • Use caution with benzodiazepines and narcotics

Intraoperative management

Monitoring and access

  • Large bore PIV x2
  • Arterial Line
  • CVP if indicated, but will often be given from interventional team.

Induction and airway management

  • Typically GETA, but may be done as a MAC sedation.
  • RSI indicated in gastroparesis, encephalopathy, variceal bleed, severe ascites

Positioning

  • Supine, head tilted to the left. Typical access is the right internal jugular.

Maintenance and surgical considerations

  • Potential intraprocedural complications 1) Portal vein rupture; intra-abdominal hemorrhage may be massive and require emergency surgery 2) Liver capsule perforation 3) Complete heart block, especially in patients with LBBB.
  • Patient may have markedly reduced drug metabolism, anticipate prolonged medication effects. Low albumin levels may alter pharmacokinetics of heavily protein-bound medications

Volume Management

  • Post-paracentesis albumin is not necessary for removal of <5L.
  • For ≥5L removed, albumin replacement can be given.
  • The AASLD Class IIA recommendation is 6-8 grams of albumin for every liter removed (~1 bottle of 50cc of 25% OR ~1 bottle of 250cc of 5% IV albumin per 2 liters of ascites).[6][7][8][9]

Emergence

  • Possibility of delayed emergence
  • Extubate when fully awake and protecting airways

Postoperative management

Disposition

  • PACU, ICU or step down ICU as indicated

Pain management

  • Multimodal analgesia, avoid lidocaine gtt
  • IV narcotics, avoid morphine

Potential complications

Potential PACU complications include PV thrombosis (may mimic MI or PE), intraperitoneal bleed, hepatic infarction, new or worsening encephalopathy (20% of patients), stent migration, sepsis, fluid/electrolyte disturbance, biliary tree injury.

Hepatic encephalopathy: failure of liver to filter toxic metabolites such as ammonia, which leads to CNS toxicity. Most sedative-hypnotics and IV induction agents serve to decrease blood flow to the liver and may result in acute accumulation of toxic metabolites which can precipitate hepatic encephalopathy. Of note, propofol has minimal effect on hepatic blood flow and predictable pharmacokinetic profile even in the setting of severe hepatic dysfunction.

Procedure variants

TIPS DIPS
Unique considerations Transjugular Intrahepatic Portosystemic Shunt Direct IVC to Portal Shunt
Surgical access Right internal jugular vein
  • Fluoroscopic guidance using CO2 contrast from hepatic vein, through liver into the PV
Internal jugular and femoral vein
  • IV ultrasound guides needle puncture from IVC, through caudate lobe, into PV
Surgical time
EBL 0-3000 mL 0-3000 mL
Postoperative disposition PACU to stepdown or ICU PACU to stepdown or ICU
Pain management Multimodal analgesics Multimodal analgesics
Potential complications

References

  1. Wipassakornwarawuth, Suchart; Opasoh, Manus; Ammaranun, Kasiri; Janthawanit, Pathomporn (2002-06). "Rate and associated risk factors of rebleeding after endoscopic variceal band ligation". Journal of the Medical Association of Thailand = Chotmaihet Thangphaet. 85 (6): 698–702. ISSN 0125-2208. PMID 12322843. Check date values in: |date= (help)
  2. Anesthesiologist's manual of surgical procedures. Richard A. Jaffe, Clifford A. Schmiesing, Brenda Golianu (Sixth edition ed.). Philadelphia. 2020. ISBN 978-1-4698-2916-6. OCLC 1117874404. |edition= has extra text (help)CS1 maint: others (link)
  3. Chana, A.; James, M.; Veale, P. (2016-12-01). "Anaesthesia for transjugular intrahepatic portosystemic shunt insertion". BJA Education. 16 (12): 405–409. doi:10.1093/bjaed/mkw022. ISSN 2058-5349.
  4. Narahara, Yoshiyuki; Kanazawa, Hidenori; Fukuda, Takeshi; Matsushita, Yoko; Harimoto, Hirotomo; Kidokoro, Hideko; Katakura, Tamaki; Atsukawa, Masanori; Taki, Yasuhiko; Kimura, Yuu; Nakatsuka, Katsuhisa (2011-01). "Transjugular intrahepatic portosystemic shunt versus paracentesis plus albumin in patients with refractory ascites who have good hepatic and renal function: a prospective randomized trial". Journal of Gastroenterology. 46 (1): 78–85. doi:10.1007/s00535-010-0282-9. ISSN 1435-5922. PMID 20632194. Check date values in: |date= (help)
  5. García-Pagán, Juan Carlos; Caca, Karel; Bureau, Christophe; Laleman, Wim; Appenrodt, Beate; Luca, Angelo; Abraldes, Juan G.; Nevens, Frederik; Vinel, Jean Pierre; Mössner, Joachim; Bosch, Jaime (2010-06-24). "Early use of TIPS in patients with cirrhosis and variceal bleeding". The New England Journal of Medicine. 362 (25): 2370–2379. doi:10.1056/NEJMoa0910102. ISSN 1533-4406. PMID 20573925.
  6. Runyon, Bruce A.; AASLD (2013-04). "Introduction to the revised American Association for the Study of Liver Diseases Practice Guideline management of adult patients with ascites due to cirrhosis 2012". Hepatology (Baltimore, Md.). 57 (4): 1651–1653. doi:10.1002/hep.26359. ISSN 1527-3350. PMID 23463403. Check date values in: |date= (help)
  7. Ginès, P.; Titó, L.; Arroyo, V.; Planas, R.; Panés, J.; Viver, J.; Torres, M.; Humbert, P.; Rimola, A.; Llach, J. (1988-06). "Randomized comparative study of therapeutic paracentesis with and without intravenous albumin in cirrhosis". Gastroenterology. 94 (6): 1493–1502. doi:10.1016/0016-5085(88)90691-9. ISSN 0016-5085. PMID 3360270. Check date values in: |date= (help)
  8. Aithal, Guruprasad P.; Palaniyappan, Naaventhan; China, Louise; Härmälä, Suvi; Macken, Lucia; Ryan, Jennifer M.; Wilkes, Emilie A.; Moore, Kevin; Leithead, Joanna A.; Hayes, Peter C.; O'Brien, Alastair J. (2021-01). "Guidelines on the management of ascites in cirrhosis". Gut. 70 (1): 9–29. doi:10.1136/gutjnl-2020-321790. ISSN 1468-3288. PMC 7788190. PMID 33067334. Check date values in: |date= (help)
  9. Arora, Vinod; Vijayaraghavan, Rajan; Maiwall, Rakhi; Sahney, Amrish; Thomas, Sherin Sarah; Ali, Rehmat; Jain, Priyanka; Kumar, Guresh; Sarin, Shiv Kumar (2020-09). "Paracentesis-Induced Circulatory Dysfunction With Modest-Volume Paracentesis Is Partly Ameliorated by Albumin Infusion in Acute-on-Chronic Liver Failure". Hepatology (Baltimore, Md.). 72 (3): 1043–1055. doi:10.1002/hep.31071. ISSN 1527-3350. PMID 31849085. Check date values in: |date= (help)