Video-assisted thoracoscopic surgery

From WikiAnesthesia
Revision as of 11:38, 12 November 2021 by Karen S Sibert (talk | contribs) (Added references)
Video-assisted thoracoscopic surgery
Anesthesia type

General (rarely, monitored anesthesia care for selected cases)

Airway

Double-lumen endotracheal tube or bronchial blocker

Lines and access

Adequate peripheral IV access; consider arterial line

Monitors

Standard; consider arterial monitoring

Primary anesthetic considerations
Preoperative

Pulmonary function testing, prehabilitation to optimize pulmonary status; consider thoracic epidural catheter

Intraoperative

One-lung ventilation; protective ventilation strategies

Postoperative

Pain control, pulmonary hygiene

Article quality
Editor rating
In development
User likes
1

Anesthesia for minimally invasive, video-assisted or robotic-assisted thoracoscopic surgery (VATS), is similar to anesthesia for open thoracic cases in many respects. However, achieving lung isolation quickly and completely is even more important, since even a slightly inflated lung may obstruct the surgeon’s view. Procedures that are amenable to VATS include but are not limited to:

  • Mediastinoscopy
  • Wedge resection or lung biopsy
  • Lobectomy or segmentectomy, including bronchial sleeve resection
  • Pleurodesis, mechanical or talc, for pleural effusion or spontaneous pneumothorax
  • Decortication, including evacuation of empyema or hemothorax
  • Thymectomy
  • Lung volume reduction for severe emphysema
  • Thoracic sympathectomy for hyperhidrosis or treatment of refractory ventricular tachycardia

Nearly any patient may be a candidate regardless of extremes of age or pulmonary disease. 

Procedures usually requiring open thoracotomy include pneumonectomy, intrathoracic tracheal resection, and chest wall resection. 

The advantages of VATS include decreased hospital length of stay, decreased morbidity, and less postoperative pain.

The keys to anesthesia success include:

  • Availability of video laryngoscopy to facilitate intubation;
  • Facility with placing both right and left endobronchial tubes;
  • Skill with fiberoptic bronchoscopy;
  • Having a dedicated team of personnel with expertise in thoracic anesthesiology.

Primary anesthetic considerations include optimal double-lumen tube placement with fiberoptic guidance[1], management of one-lung ventilation to avoid hypoxia and unnecessary hyperoxia[2], and use of protective ventilation strategies to avoid injury to the ventilated lung.[3][4][5] Acute lung injury following thoracic surgery may lead to the development of ARDS with potentially lethal outcomes.[6][7][8][9]

Preoperative management

Patients may present for VATS in sound health or with substantial disease burden.

A young, otherwise healthy patient who presents for thoracic sympathectomy for hyperhidrosis, or bleb resection with mechanical pleurodesis for recurrent spontaneous pneumothorax, may require no preoperative testing.

At the opposite extreme, patients may present with COPD, decreased lung function on the affected side, pleural or pericardial effusion, anemia, poor nutritional status, and effects of neoadjuvant chemotherapy and/or radiation. Whenever possible, prehabilitation in preparation for surgery should be considered to correct anemia, improve nutritional status, and improve functional capacity.

Patient evaluation

System Considerations
Cardiovascular Evidence of ventricular or valvular dysfunction, pulmonary hypertension
Respiratory History of COPD, asthma, pleural effusion, pulmonary fibrosis, sarcoidosis, other pulmonary pathology
Neurologic Peripheral neuropathy due to chemotherapy; evidence of myasthenia or paraneoplastic syndrome; assess appropriateness for epidural analgesia
Gastrointestinal Evidence of carcinoid syndrome in cases of lung or endobronchial carcinoid tumor
Hematologic Hypercoagulability due to underlying malignancy

Labs and studies

  • Routine preoperative laboratory, EKG, and radiographic studies as appropriate for patient age and institutional guidelines
  • Consider pulmonary function testing
  • Consider echocardiography, stress testing
  • Consider ventilation/perfusion (v/q) scan before pneumonectomy

Operating room setup

  1. Double-lumen endotracheal tube (DLT) or bronchial blocker as appropriate
  2. Fiberoptic bronchoscope
  3. Video laryngoscope -- may facilitate DLT insertion
  4. Consider arterial line setup and transducer

Patient preparation and premedication

Patients should fast per institutional guidelines. Premedication is at the choice of the anesthesiologist depending on the patient's age and other relevant factors.

Regional and neuraxial techniques

Thoracic epidural analgesia may be considered especially if bilateral VATS is undertaken or if the surgeon thinks there is a high likelihood that conversion to open thoracotomy may be necessary.

The epidural catheter should be inserted at a high enough level that the patient will not have any lumbar motor block and can safely ambulate. Insertion prior to surgery offers the advantage of beginning epidural infusion before the patient emerges from anesthesia.

If the patient has a contraindication to epidural catheter placement, other regional techniques may be considered: lumbar spinal opioid analgesia, erector spinae plane block[10], intercostal or paravertebral blocks.

Intraoperative management

Monitoring and access

Induction and airway management

Positioning

Maintenance and surgical considerations

Emergence

Postoperative management

Disposition

Pain management

Potential complications

Procedure variants

Variant 1 Variant 2
Unique considerations
Position
Surgical time
EBL
Postoperative disposition
Pain management
Potential complications

References

  1. Hao, David; Saddawi-Konefka, Daniel; Low, Sarah; Alfille, Paul; Baker, Keith (2021-10-14). Ingelfinger, Julie R. (ed.). "Placement of a Double-Lumen Endotracheal Tube". New England Journal of Medicine. 385 (16): e52. doi:10.1056/NEJMvcm2026684. ISSN 0028-4793.
  2. Ishikawa, Seiji; Lohser, Jens (February 1, 2011). "One-lung ventilation and arterial oxygenation". Current Opinion in Anaesthesiology. 24 (1): 24–31. doi:10.1097/ACO.0b013e3283415659. ISSN 0952-7907.
  3. Güldner, Andreas; Kiss, Thomas; Serpa Neto, Ary; Hemmes, Sabrine N. T.; Canet, Jaume; Spieth, Peter M.; Rocco, Patricia R. M.; Schultz, Marcus J.; Pelosi, Paolo; Gama de Abreu, Marcelo (September 1, 2015). "Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers". Anesthesiology. 123 (3): 692–713. doi:10.1097/ALN.0000000000000754. ISSN 1528-1175. PMID 26120769.
  4. Hedenstierna, Göran (2015-09-01). "Small Tidal Volumes, Positive End-expiratory Pressure, and Lung Recruitment Maneuvers during Anesthesia: Good or Bad?". Anesthesiology. 123 (3): 501–503. doi:10.1097/ALN.0000000000000755. ISSN 0003-3022.
  5. Colquhoun, Douglas A.; Leis, Aleda M.; Shanks, Amy M.; Mathis, Michael R.; Naik, Bhiken I.; Durieux, Marcel E.; Kheterpal, Sachin; Pace, Nathan L.; Popescu, Wanda M.; Schonberger, Robert B.; Kozower, Benjamin D. (2021-04-01). "A Lower Tidal Volume Regimen during One-lung Ventilation for Lung Resection Surgery Is Not Associated with Reduced Postoperative Pulmonary Complications". Anesthesiology. 134 (4): 562–576. doi:10.1097/ALN.0000000000003729. ISSN 0003-3022. PMID 33635945.
  6. Eichenbaum, Kenneth D.; Neustein, Steven M. (January 8, 2010). "Acute Lung Injury After Thoracic Surgery". Journal of Cardiothoracic and Vascular Anesthesia. 24 (4): 681–690. doi:10.1053/j.jvca.2009.10.032.
  7. Licker, Marc; de Perrot, Marc; Spiliopoulos, Anastase; Robert, John; Diaper, John; Chevalley, Catherine; Tschopp, Jean-Marie (December 1, 2003). "Risk Factors for Acute Lung Injury After Thoracic Surgery for Lung Cancer:". Anesthesia & Analgesia. 97 (6): 1558–1565. doi:10.1213/01.ANE.0000087799.85495.8A. ISSN 0003-2999.
  8. Slinger, Peter Douglas (December 1, 2003). "Acute Lung Injury After Pulmonary Resection: More Pieces of the Puzzle:". Anesthesia & Analgesia. 97 (6): 1555–1557. doi:10.1213/01.ANE.0000098363.76962.A2. ISSN 0003-2999.
  9. Licker, Marc; Fauconnet, Pascal; Villiger, Yann; Tschopp, Jean-Marie (February 1, 2009). "Acute lung injury and outcomes after thoracic surgery". Current Opinion in Anaesthesiology. 22 (1): 61–67. doi:10.1097/ACO.0b013e32831b466c. ISSN 0952-7907.
  10. Adhikary, Sanjib Das; Pruett, Ashlee; Forero, Mauricio; Thiruvenkatarajan, Venkatesan (January 1, 2018). "Erector spinae plane block as an alternative to epidural analgesia for post-operative analgesia following video-assisted thoracoscopic surgery: A case study and a literature review on the spread of local anaesthetic in the erector spinae plane". Indian Journal of Anaesthesia. 62 (1): 75–78. doi:10.4103/ija.IJA_693_17. ISSN 0019-5049. PMC 5787896. PMID 29416155.