Vecuronium
Vecuronium.svg
Clinical data
Drug class

Neuromuscular blocker

Routes of administration

Intravenous

Dosage
Pharmacodynamics
Mechanism of action

Nicotinic acetylcholine antagonism

Pharmacokinetics
Physical and chemical data
Article quality
Editor rating
Unrated
User likes
0

Vecuronium is a steroidal intermediate acting non-depolarizing neuromuscular blocking agent used for tracheal intubation and surgical relaxation in patients. It is also used to provide paralysis in patients with acute respiratory distress syndrome in the intensive care unit.

Uses

  • Optimizing tracheal intubation condition
    • Abduction of vocal cords
    • Opening of mouth
    • Reduction in coughing and gagging
  • Provide surgical relaxation
  • Optimizing mechanical ventilation conditions
    • Reduction in bucking/coughing
    • Reduction in breath stacking
  • Provide paralysis in patients with acute respiratory distress syndrome in the intensive care unit via continuous infusion early in the course of ARDS for patients with a PaO2/FiO2 less than 150. The proposed mechanism of the beneficial effect is possibly by lowering trans-pulmonary pressure reducing barotrauma.

Contraindications

Absolute contraindications

  • Known hypersensitivity

Precautions

  • Prolonged duration of action in patients with cholestasis or cirrhosis
  • Dose requirement can be unpredictable in patients with renal failure
  • Patients with myasthenia gravis/myathenic syndrome
  • Amyotrophic lateral sclerosis
  • Autoimmune disorders including polymyositis, dermatomyositis and systemic lupus erythematous
  • Familial periodic paralysis hyperkalemia
  • Guillain-Barré syndrome
  • Muscular dystrophy (Duchenne type)
  • Myotonia including dystrophic, congenital,, and paramyotonia
  • Patient may have resistance include:
    • Burn injury
    • Cerebral palsy
    • Hemiplegia (on the affected side)
    • Muscular denervation
    • Severe chronic infection such as tetanus and botulism

Pharmacology

Pharmacodynamics

  • Primarily eliminated via hepatic metabolism: 30-40%
  • Elimination via bile: 40%
  • Elimination via renal: 20-30%
  • 3-desacetylvecuronium, 17-desacetylvecuronium and 3,17-desacetylvecuronium metabolites have neuromuscular blocking activity

Mechanism of action

  • Competitive antagonism of acetylcholine at the post junctional receptors preventing depolarization of the muscle preventing any movement. Only one molecule of the neuromuscular blocker is needed to prevent activation of the receptor as it competes with acetylcholine at the two binding sites.

Adverse effects

  • Anaphylactic reaction

Pharmacokinetics

  • Duration of action of 40 minutes

Chemistry and formulation

  • 2-desmethyl derivative of pancuronium

History

First non-depolarizing neuromuscular blocking agent with an intermediate duration of action to be introduced into clinical practice

References