Difference between revisions of "Hyperthermic intraperitoneal chemotherapy surgery"

From WikiAnesthesia
(Preoperative cyctoxic drugs)
(Updated preoperative management.)
Line 86: Line 86:
|-
|-
|Neurologic
|Neurologic
|
|Neurologic dysfunction risk based upon chemotherapy agents used
|-
|-
|Cardiovascular
|Cardiovascular
|
|Cardiomyopathy risk based upon chemotherapy agents used
|-
|-
|Respiratory
|Respiratory
|
|Pneumonitis based upon chemotherapy agents used
|-
|-
|Gastrointestinal
|Gastrointestinal
Line 98: Line 98:
|-
|-
|Hematologic
|Hematologic
|
|Risk of profound anemia
|-
|-
|Renal
|Renal
|
|Renal dysfunction based upon chemotherapy used.
Monitor creatinine and GFR
 
Abnormal electrolytes
|-
|-
|Endocrine
|Endocrine
Line 107: Line 110:
|-
|-
|Other
|Other
|
|Patients may need nutrition optimization prior to surgery
 
Patients can benefit from active prehabilitation prior to surgery
|}
|}


=== Labs and studies<!-- Describe any important labs or studies. Include reasoning to justify the study and/or interpretation of results in the context of this procedure. If none, this section may be removed. --> ===
=== Labs and studies<!-- Describe any important labs or studies. Include reasoning to justify the study and/or interpretation of results in the context of this procedure. If none, this section may be removed. --> ===
* CMP (particularly renal function and electrolytes)
* CBC (identify and correct anemia)


=== Operating room setup<!-- Describe any unique aspects of operating room preparation. Avoid excessively granular information. Use drug classes instead of specific drugs when appropriate. If none, this section may be removed. --> ===
=== Operating room setup<!-- Describe any unique aspects of operating room preparation. Avoid excessively granular information. Use drug classes instead of specific drugs when appropriate. If none, this section may be removed. --> ===
* Fluid warmer
* Arterial line setup
* ± Central line
* ± Cardiac output monitor (i.e. Flowtrack)
* NG tube
* Vasopressor drips
* Blood products


=== Patient preparation and premedication<!-- Describe any unique considerations for patient preparation and premedication. If none, this section may be removed. --> ===
=== Patient preparation and premedication<!-- Describe any unique considerations for patient preparation and premedication. If none, this section may be removed. --> ===
* Preoperative nutrition consult
* Preoperative prehabilitation plan


=== Regional and neuraxial techniques<!-- Describe any potential regional and/or neuraxial techniques which may be used for this case. If none, this section may be removed. --> ===
=== Regional and neuraxial techniques<!-- Describe any potential regional and/or neuraxial techniques which may be used for this case. If none, this section may be removed. --> ===
* Epidural or paravertebral blocks (if epidural is contraindicated)


== Intraoperative management ==
== Intraoperative management ==


=== Monitoring and access<!-- List and/or describe monitors and access typically needed for this case. Please describe rationale for any special monitors or access. --> ===
=== Monitoring and access<!-- List and/or describe monitors and access typically needed for this case. Please describe rationale for any special monitors or access. --> ===
* Multiple large-bore PIVs (for active fluid resuscitation)
* ± Rapid infusion catheter
* Arterial line
* ± Central venous catheter


=== Induction and airway management<!-- Describe the important considerations and general approach to the induction of anesthesia and how the airway is typically managed for this case. --> ===
=== Induction and airway management<!-- Describe the important considerations and general approach to the induction of anesthesia and how the airway is typically managed for this case. --> ===
* General anesthesia with ETT
=== Surgical Timeout Communication ===
Operative goals are crucial to delineate with the surgical team prior to incision. Key discussion points include:
# Patient Risk Factors
# DVT prophylaxis
# Fluid Goals
# Body Temperature Management plus additional monitors (esophageal, nasopharyngeal, bladder, axillary, etc)
# Type of chemotherapy agent used, including dilution solution and its implications on electrolytes
# Consideration for further renal protection therapy
# Trigger for blood transfusion
# Preoperative antibiotic choice


=== Positioning<!-- Describe any unique positioning considerations, including potential intraoperative position changes. If none, this section may be removed. --> ===
=== Positioning<!-- Describe any unique positioning considerations, including potential intraoperative position changes. If none, this section may be removed. --> ===
* Supine


=== Maintenance and surgical considerations<!-- Describe the important considerations and general approach to the maintenance of anesthesia, including potential complications. Be sure to include any steps to the surgical procedure that have anesthetic implications. --> ===
=== Maintenance and surgical considerations<!-- Describe the important considerations and general approach to the maintenance of anesthesia, including potential complications. Be sure to include any steps to the surgical procedure that have anesthetic implications. --> ===

Revision as of 12:43, 19 May 2021

Hyperthermic intraperitoneal chemotherapy surgery
Anesthesia type

General

Airway

ETT

Lines and access

Large bore PIV X2 Central venous access Nasogastric tube

Monitors

Standard ASA monitors Arterial Line (consider cardiac output monitoring) Central venous pressure

Primary anesthetic considerations
Preoperative

Baseline renal function Electrolyte status Anemia Prehabilitation Nutrition optimization

Intraoperative

Hemodynamic monitoring Active fluid resuscitation Normothermia or mild hypothermia Pre-HIPEC electrolytes HIPEC-phase electrolytes

Postoperative

Maintain urine output Consider ICU admission Prolonged vasoplegia Sodium thiosulfate infusion (12 hrs)

Article quality
Editor rating
Comprehensive
User likes
0

Cytoreductive surgery and Hyperthermic Intraperitoneal Chemoperfusion (HIPEC) is a combined procedure utilized to treat peritoneal surface cancers.[1] These cancers include secondary peritoneal carcinomatosis, pseudomyxoma peritonei and primary peritoneal tumors.[1][2]  Cytoreductive surgery involves debulking the majority of tumors until the remainder are small enough to ensure adequate efficacy with HIPEC.

HIPEC involves infusing heated cytotoxic chemotherapeutic drugs directly into the surgical site in order to effectively penetrate involved cancer while limiting exposure to normal tissue and decrease systemic uptake.[1][3][4] This may be performed in a closed abdomen via perfusion circuit or an open abdomen +/- cavity expanders.[5]  An open abdomen technique may reduce increased intraabdominal pressures and prevent reuse of the cytotoxic solution.  However, the closed abdomen technique reduces risk of exposure of the medications to the OR staff.

Important perioperative considerations include temperature management, cardiovascular management, intra-abdominal pressures, metabolic derangements (depending on carrier solution of chemotherapeutic agent), potential toxicities (see table below), coagulopathy, fluid/renal management and pain management.[1][3]

Intraoperatively, OR staff may be exposed to cytotoxic agents due to high concentrations of chemotherapeutic medications, long case duration,  and smoke and or mechanical exposure. Pregnant or those actively planning for pregnancy, those with a history of congenital malformations or abortions should carefully consider participation in HIPEC cases. Safety precautions including high-power filtration masks, eye protection, gloves, and standard universal precautions should always be heeded.[6]

Preoperative management

Cytotoxic Agents

Chemotherapeutic

agent

End-organ toxicity
Platinum

(cisplatin/oxaliplatin)

Nephrotoxicity (hypomagnesemia/hypocalemia)

Nausea/Vomiting

Neurotoxicity (Peripheral neuropathy, seizure, ototoxcity, blindness)

Myelosupression

Anaphylaxis

Mitomycin C Myelosupression

Pulmonary/interstitial pneumonitis

nausea/vomiting/diarrhea

cardiomyopathy

hemolytic uremic syndrome

5-Fluropyrimidines GI ulcers

myelosuppression

rashes, keratitis, ataxia, cognitive dysfunction

coronary spasm

biliary sclerosis

Anthracyclines

(doxorubicin)

Myelosuppression

GI mucositis

Cardiomyopathy

Patient evaluation

System Considerations
Neurologic Neurologic dysfunction risk based upon chemotherapy agents used
Cardiovascular Cardiomyopathy risk based upon chemotherapy agents used
Respiratory Pneumonitis based upon chemotherapy agents used
Gastrointestinal
Hematologic Risk of profound anemia
Renal Renal dysfunction based upon chemotherapy used.

Monitor creatinine and GFR

Abnormal electrolytes

Endocrine
Other Patients may need nutrition optimization prior to surgery

Patients can benefit from active prehabilitation prior to surgery

Labs and studies

  • CMP (particularly renal function and electrolytes)
  • CBC (identify and correct anemia)

Operating room setup

  • Fluid warmer
  • Arterial line setup
  • ± Central line
  • ± Cardiac output monitor (i.e. Flowtrack)
  • NG tube
  • Vasopressor drips
  • Blood products

Patient preparation and premedication

  • Preoperative nutrition consult
  • Preoperative prehabilitation plan

Regional and neuraxial techniques

  • Epidural or paravertebral blocks (if epidural is contraindicated)

Intraoperative management

Monitoring and access

  • Multiple large-bore PIVs (for active fluid resuscitation)
  • ± Rapid infusion catheter
  • Arterial line
  • ± Central venous catheter

Induction and airway management

  • General anesthesia with ETT

Surgical Timeout Communication

Operative goals are crucial to delineate with the surgical team prior to incision. Key discussion points include:

  1. Patient Risk Factors
  2. DVT prophylaxis
  3. Fluid Goals
  4. Body Temperature Management plus additional monitors (esophageal, nasopharyngeal, bladder, axillary, etc)
  5. Type of chemotherapy agent used, including dilution solution and its implications on electrolytes
  6. Consideration for further renal protection therapy
  7. Trigger for blood transfusion
  8. Preoperative antibiotic choice

Positioning

  • Supine

Maintenance and surgical considerations

Emergence

Postoperative management

Disposition

Pain management

Potential complications

Procedure variants

Variant 1 Variant 2
Unique considerations
Position
Surgical time
EBL
Postoperative disposition
Pain management
Potential complications

References

  1. 1.0 1.1 1.2 1.3 Webb, Christopher Allen-John; Weyker, Paul David; Moitra, Vivek K.; Raker, Richard K. (2013-04). "An overview of cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion for the anesthesiologist". Anesthesia and Analgesia. 116 (4): 924–931. doi:10.1213/ANE.0b013e3182860fff. ISSN 1526-7598. PMID 23460568. Check date values in: |date= (help)
  2. Macrì, Antonio (2010-01-15). "New approach to peritoneal surface malignancies". World Journal of Gastrointestinal Oncology. 2 (1): 9–11. doi:10.4251/wjgo.v2.i1.9. ISSN 1948-5204. PMC 2999159. PMID 21160811.
  3. 3.0 3.1 Schmidt, C.; Moritz, S.; Rath, S.; Grossmann, E.; Wiesenack, C.; Piso, P.; Graf, B. M.; Bucher, M. (2009-09-15). "Perioperative management of patients with cytoreductive surgery for peritoneal carcinomatosis". Journal of Surgical Oncology. 100 (4): 297–301. doi:10.1002/jso.21322. ISSN 1096-9098. PMID 19697426.
  4. Al-Shammaa, Hassan-Alaa-Hammed; Li, Yan; Yonemura, Yutaka (2008-02-28). "Current status and future strategies of cytoreductive surgery plus intraperitoneal hyperthermic chemotherapy for peritoneal carcinomatosis". World Journal of Gastroenterology. 14 (8): 1159–1166. doi:10.3748/wjg.14.1159. ISSN 1007-9327. PMC 2690662. PMID 18300340.
  5. Witkamp, A. J.; de Bree, E.; Van Goethem, R.; Zoetmulder, F. A. (2001-12). "Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy". Cancer Treatment Reviews. 27 (6): 365–374. doi:10.1053/ctrv.2001.0232. ISSN 0305-7372. PMID 11908929. Check date values in: |date= (help)
  6. González-Moreno, Santiago; González-Bayón, Luis; Ortega-Pérez, Gloria (2012-10). "Hyperthermic intraperitoneal chemotherapy: methodology and safety considerations". Surgical Oncology Clinics of North America. 21 (4): 543–557. doi:10.1016/j.soc.2012.07.001. ISSN 1558-5042. PMID 23021715. Check date values in: |date= (help)