Difference between revisions of "Craniotomy for extracranial-intracranial revascularization"

From WikiAnesthesia
m (Added variants table)
m (Text replacement - "Art line" to "Arterial line")
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
| anesthesia_type = General
| anesthesia_type = General
| airway = ETT
| airway = ETT
| lines_access = PIV x 2 <br/> Art line <br/>
| lines_access = PIV x2
| monitors = Standard ASA <br/>
Arterial line
5-lead EKG <br/>
| monitors = Standard ASA
Core temp <br/>
5-lead EKG
UOP <br/>
Core temp
ABG <br/>
UOP
ABG
EEG
EEG
| considerations_preoperative = Characterize neurologic deficits <br/>
| considerations_preoperative = Characterize neurologic deficits
Consider anxiolytic <br/>
Consider anxiolytic
| considerations_intraoperative = Smooth induction <br/>
| considerations_intraoperative = Smooth induction
Maintain CPP <br/>
Maintain CPP
Maximize flow to ischemic areas <br/>
Maximize flow to ischemic areas
Decrease CMRO2 <br/>
Decrease CMRO2
Smooth extubation
Smooth extubation
| considerations_postoperative = Careful control of BP <br/>
| considerations_postoperative = Careful control of BP
PONV prophylaxis
PONV prophylaxis
}}'''Craniotomy for extracranial-intracranial revascularization''' (also referred to as '''EC-IC bypass''') is an intracranial procedure which augments cerebral blood flow by relocating an extracranial vessel intracranially.
}}'''Craniotomy for extracranial-intracranial revascularization''' (also referred to as '''EC-IC bypass''') is an intracranial procedure which augments cerebral blood flow by relocating an extracranial vessel intracranially.
Line 28: Line 29:


===Surgical procedure===
===Surgical procedure===
The procedure is performed through a craniotomy. The extracranial source is most commonly the superficial temporal artery, but other branches of the external carotid artery are possible. The temporalis muscle or omentum can also be used when using an external carotid branch is not preferred.
The procedure is performed through a craniotomy. The extracranial source is most commonly the superficial temporal artery, but other branches of the external carotid artery are possible. The temporalis muscle or omentum can also be used when using an external carotid branch is not preferred.<ref>{{Cite book|url=https://www.worldcat.org/oclc/1117874404|title=Anesthesiologist's manual of surgical procedures|date=2020|others=Richard A. Jaffe, Clifford A. Schmiesing, Brenda Golianu|isbn=978-1-4698-2916-6|edition=6|location=Philadelphia|oclc=1117874404}}</ref>


The extracranial source is then routed through the craniotomy, and revascularization is achieved in one of two approaches:
The extracranial source is then routed through the craniotomy, and revascularization is achieved in one of two approaches:
Line 104: Line 105:
***Limits postinduction hypotension
***Limits postinduction hypotension
***Prevents hemodynamic response to laryngoscopy
***Prevents hemodynamic response to laryngoscopy
**Ephedrine may preserve cerebral blood flow better than phenylephrine<ref name=":0">{{Cite journal|last=Koch|first=Klaus U.|last2=Mikkelsen|first2=Irene K.|last3=Aanerud|first3=Joel|last4=Espelund|first4=Ulrick S.|last5=Tietze|first5=Anna|last6=Oettingen|first6=Gorm V.|last7=Juul|first7=Niels|last8=Nikolajsen|first8=Lone|last9=Østergaard|first9=Leif|last10=Rasmussen|first10=Mads|date=2020-08|title=Ephedrine versus Phenylephrine Effect on Cerebral Blood Flow and Oxygen Consumption in Anesthetized Brain Tumor Patients: A Randomized Clinical Trial|url=https://pubmed.ncbi.nlm.nih.gov/32482999|journal=Anesthesiology|volume=133|issue=2|pages=304–317|doi=10.1097/ALN.0000000000003377|issn=1528-1175|pmid=32482999}}</ref>
**Ephedrine may preserve cerebral blood flow better than phenylephrine<ref name=":0">{{Cite journal|last=Koch|first=Klaus U.|last2=Mikkelsen|first2=Irene K.|last3=Aanerud|first3=Joel|last4=Espelund|first4=Ulrick S.|last5=Tietze|first5=Anna|last6=Oettingen|first6=Gorm V.|last7=Juul|first7=Niels|last8=Nikolajsen|first8=Lone|last9=Østergaard|first9=Leif|last10=Rasmussen|first10=Mads|date=2020|title=Ephedrine versus Phenylephrine Effect on Cerebral Blood Flow and Oxygen Consumption in Anesthetized Brain Tumor Patients: A Randomized Clinical Trial|url=https://pubmed.ncbi.nlm.nih.gov/32482999|journal=Anesthesiology|volume=133|issue=2|pages=304–317|doi=10.1097/ALN.0000000000003377|issn=1528-1175|pmid=32482999}}</ref>
* Muscle relaxant may require reversal if neuromonitoring is used
* Muscle relaxant may require reversal if neuromonitoring is used



Latest revision as of 11:40, 5 April 2022

Craniotomy for extracranial-intracranial revascularization
Anesthesia type

General

Airway

ETT

Lines and access

PIV x2 Arterial line

Monitors

Standard ASA 5-lead EKG Core temp UOP ABG EEG

Primary anesthetic considerations
Preoperative

Characterize neurologic deficits Consider anxiolytic

Intraoperative

Smooth induction Maintain CPP Maximize flow to ischemic areas Decrease CMRO2 Smooth extubation

Postoperative

Careful control of BP PONV prophylaxis

Article quality
Editor rating
Comprehensive
User likes
2

Craniotomy for extracranial-intracranial revascularization (also referred to as EC-IC bypass) is an intracranial procedure which augments cerebral blood flow by relocating an extracranial vessel intracranially.

Overview

Indications

An EC-IC bypass is performed when there is severe stenosis or occlusion of an intracranial artery. Some common scenarios include:

  • Moya-moya disease
  • Intracranial aneurysms which cannot be directly treated and require complete occlusion of the proximal artery

Surgical procedure

The procedure is performed through a craniotomy. The extracranial source is most commonly the superficial temporal artery, but other branches of the external carotid artery are possible. The temporalis muscle or omentum can also be used when using an external carotid branch is not preferred.[1]

The extracranial source is then routed through the craniotomy, and revascularization is achieved in one of two approaches:

  • "Direct", where the extracranial vessel is directly anastomosed to an intracranial vessel (typically to a branch of the middle cerebral artery)
  • "Indirect", where the donor source is laid on the surface of the brain but not directly anastomosed, with the expectation that over time vascular growth will occur to provide additional flow to the brain.

Preoperative management

Patient evaluation

System Considerations
Neurologic
  • Patients typically present with variable focal neurologic symptoms, which should be well characterized and documented
Cardiovascular
  • Hypertension is a common adaptive response to maintain CPP
    • Normotension may be undesirable in the setting of severe cerebrovascular disease
    • Patients are often treated with midodrine preoperatively to induce hypertension and improve CPP
Hematologic
  • Patients often on aspirin through day of surgery
  • Anticoagulants impacting PT/PTT typically discontinued 1 week prior to surgery

Labs and studies

  • EKG
  • Echo (if concern for cardiovascular disease)
  • Coronary angiography (depending on cardiac risk factors)
  • Complete blood count
  • Chemistry panel
  • Coagulation panel
  • Cerebral angiography performed to identify cause of neurologic symptoms

Operating room setup

  • Infusion pumps
  • If inducing hypothermia
    • Surface cooling device (i.e. cold-water circulating blanket)
    • Warming device
      • Patient will need aggressive rewarming post-anastomosis
      • Consider bladder irrigation, warm-water circulating blanket, forced warm air blanket
    • Consider central heat exchanger, especially if patient has high surface-to-volume ratio

Patient preparation and premedication

  • Consider aprepitant if patient has history of severe PONV
  • Avoid scopolamine for PONV, as it may confound post-op neurologic exams
  • Anxiolysis typically reasonable

Regional and neuraxial techniques

  • Avoid scalp blocks, as they may interfere with donor vessel blood flow

Intraoperative management

Monitoring and access

  • Standard ASA monitors
  • 5-Lead EKG
  • Core temperature
  • Urine output
  • Arterial blood pressure
  • EEG (particularly if inducing burst suppression)
  • Central line typically not required

Induction and airway management

  • Maintain controlled hypertension throughout induction (MAPs 90-110) to maintain cerebral perfusion pressure
    • One effective approach is to use high-dose narcotic (fentanyl 7-10 mcg/kg) and low-dose propofol (0.5 mg/kg)
      • Limits postinduction hypotension
      • Prevents hemodynamic response to laryngoscopy
    • Ephedrine may preserve cerebral blood flow better than phenylephrine[2]
  • Muscle relaxant may require reversal if neuromonitoring is used

Positioning

  • Supine
  • Table turned 180
  • Mayfield skull fixation
    • Prior to pinning, a remifentanil bolus (2-4mcg/kg) is useful to minimize hemodynamic lability
  • Shoulder roll

Maintenance and surgical considerations

  • Anesthesia is typically maintained with a combination of a general anesthetic and remifentanil
  • Controlled hypertension (MAPs 90-110) to preserve cerebral perfusion pressure
    • Ephedrine boluses may be preferable to improve cerebral blood flow[2] and avoid reflexive bradycardia
    • Phenylephrine infusion typically used to maintain CPP during procedure
  • Normocarbia
    • Cerebral vasoconstriction from hypocarbia may lead to cerebral ischemia in these patients
  • Normovolemia
  • Dexamethasone useful to reduce intracranial swelling and decrease PONV
  • Some centers use mild hypothermia (33-34°C) to decrease cerebral metabolic rate and increase tolerance to ischemia
  • Preincision antibiotics
  • If performing a direct anastomosis
    • Some centers use mild hypothermia (33-34 °C) for cerebral protection
    • Establish burst suppression (propofol 1mg/kg) immediately prior to cross clamping of cerebral artery
      • Theoretical benefit of decreasing cerebral metabolic rate and increasing tolerance for ischemia, though evidence is limited
      • A bolus dose of ephedrine and/or phenylephrine typically needed to counterbalance hypotensive effect of propofol

Emergence

  • Controlled hypertension typically maintained in postoperative period even if direct anastomosis performed
    • Titrate vasoactive infusions down as anesthetic weaned
    • If excessive hypertension develop, beta-blockers (esmolol, labetalol) and/or vasodilators (clevidipine, SNP) may be needed to maintain control during emergence
  • Long-acting opioids typically not needed and may interfere with postoperative neurologic examination
  • Consider IV acetaminophen
  • Consider emergence and extubation on low-dose remifentanil (0.05 mcg/kg/min) to minimize bucking and hemodynamic lability

Postoperative management

Disposition

  • ICU (typically monitored overnight in ICU)
  • Supplemental O2
  • Head of bed at 20-30°
  • Tight BP monitoring and management post-op (typically maintain at baseline levels)
  • Regular neuro checks post-op

Pain management

  • Multimodal pain management
  • Consider acetaminophen
  • Avoid scalp blocks, as they can interfere with donor vessel blood flow

Potential complications

  • Seizures
  • Stroke
  • Hemorrhage at anastomosis
  • Brain swelling can be caused by hyperemia in revascularized areas

Procedure variants

"Direct" revascularization "Indirect" revascularization
Unique considerations Involves temporary clipping of intracranial vessel to perform anastomosis

Cerebral protection strategies may include burst suppression and mild hypothermia

Surgical time
Potential complications Cerebral infarction

References

  1. Anesthesiologist's manual of surgical procedures. Richard A. Jaffe, Clifford A. Schmiesing, Brenda Golianu (6 ed.). Philadelphia. 2020. ISBN 978-1-4698-2916-6. OCLC 1117874404.CS1 maint: others (link)
  2. 2.0 2.1 Koch, Klaus U.; Mikkelsen, Irene K.; Aanerud, Joel; Espelund, Ulrick S.; Tietze, Anna; Oettingen, Gorm V.; Juul, Niels; Nikolajsen, Lone; Østergaard, Leif; Rasmussen, Mads (2020). "Ephedrine versus Phenylephrine Effect on Cerebral Blood Flow and Oxygen Consumption in Anesthetized Brain Tumor Patients: A Randomized Clinical Trial". Anesthesiology. 133 (2): 304–317. doi:10.1097/ALN.0000000000003377. ISSN 1528-1175. PMID 32482999.