Difference between revisions of "Surgery for pleural mesothelioma"

From WikiAnesthesia
(Added references)
(Added preoperative management considerations)
Line 1: Line 1:


Malignant pleural mesothelioma (MPM) is an aggressive disease, is often diagnosed at an advanced stage, and has a 5-year survival rate of only 5 to 10%. The most important risk factor for its development is exposure to asbestos; the transformation of work practices worldwide has led to a modest decline in incidence. The three primary histologic types are epithelioid, sarcomatoid, and bophasic or mixed histology, with epithelioid resulting in more favorable outcomes than sarcomatoid or mixed histology.
Malignant pleural mesothelioma (MPM) is an aggressive disease, is often diagnosed at an advanced stage, and has a 5-year survival rate of only 5 to 10%. The most important risk factor for its development is exposure to asbestos; the transformation of work practices worldwide has led to a modest decline in incidence. The three primary histologic types are epithelioid, sarcomatoid, and biphasic or mixed histology, with epithelioid resulting in more favorable outcomes than sarcomatoid or mixed histology.


One of two operations is performed:  extrapleural pneumonectomy (EPP) and pleurectomy/decortication (P/D). EPP is the radical en bloc resection of the lung, pleura, diaphragm, and pericardium. P/D is a lung-sparing but still radical procedure in which the diseased pleural envelope that encases and constricts the lung is dissected from the chest wall, mediastinum, diaphram, and pericardium, and then is stripped from the surface of the lung. P/D is the more frequently used approach as of this writing as EPP has shown no survival advantage and patients experience improved quality of life when the lung remains intact.
One of two operations is performed:  extrapleural pneumonectomy (EPP) and pleurectomy/decortication (P/D). EPP is the radical en bloc resection of the lung, pleura, diaphragm, and pericardium. P/D is a lung-sparing but still radical procedure in which the diseased pleural envelope that encases and constricts the lung is dissected from the chest wall, mediastinum, diaphram, and pericardium, and then is stripped from the surface of the lung. P/D is the more frequently used approach as of this writing as EPP has shown no survival advantage and patients experience improved quality of life when the lung remains intact.
Line 9: Line 9:


== Preoperative management ==
== Preoperative management ==
=== Patient evaluation <!-- Describe the unique and important aspects of preoperative evaluation. Add or remove rows from the systems table as needed. --> ===
 
* Patient evaluation<!-- Patients may present for P/D with substantial disease burden including decreased lung function on the affected side, pleural or pericardial effusion, anemia, poor nutritional status, and effects of neoadjuvant chemotherapy. -->
 
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 15: Line 17:
!Considerations
!Considerations
|-
|-
|Neurologic
|Cardiovascular
|
|Consider stress testing, echocardiography; look for evidence of ventricular dysfunction, pulmonary hypertension, right heart strain from tumor involvement of pericardium
|-
|-
|Cardiovascular
|Hematologic
|
|Hypercoagulability due to underlying malignancy
|-
|-
|Respiratory
|Respiratory
|
|Pulmonary function testing; CT scan to evaluate extent of lung compression on the operative side, extent of pleural effusion
|-
|-
|Gastrointestinal
|Neurologic
|
|Peripheral neuropathy due to chemotherapy; assess appropriateness for epidural analgesia
|-
|Hematologic
|
|-
|-
|Renal
|Renal
|
|Preexisting renal disease may worsen under stress of fluid shifts, blood loss, potential hypotension
|-
|Endocrine
|
|-
|Other
|
|}
|}
=== Labs and studies <!-- Describe any important labs or studies. Include reasoning to justify the study and/or interpretation of results in the context of this procedure. If none, this section may be removed. --> ===
=== Labs and studies <!-- Describe any important labs or studies. Include reasoning to justify the study and/or interpretation of results in the context of this procedure. If none, this section may be removed. --> ===

Revision as of 15:20, 2 November 2021

Malignant pleural mesothelioma (MPM) is an aggressive disease, is often diagnosed at an advanced stage, and has a 5-year survival rate of only 5 to 10%. The most important risk factor for its development is exposure to asbestos; the transformation of work practices worldwide has led to a modest decline in incidence. The three primary histologic types are epithelioid, sarcomatoid, and biphasic or mixed histology, with epithelioid resulting in more favorable outcomes than sarcomatoid or mixed histology.

One of two operations is performed: extrapleural pneumonectomy (EPP) and pleurectomy/decortication (P/D). EPP is the radical en bloc resection of the lung, pleura, diaphragm, and pericardium. P/D is a lung-sparing but still radical procedure in which the diseased pleural envelope that encases and constricts the lung is dissected from the chest wall, mediastinum, diaphram, and pericardium, and then is stripped from the surface of the lung. P/D is the more frequently used approach as of this writing as EPP has shown no survival advantage and patients experience improved quality of life when the lung remains intact.

Currently a multi-center trial, MARS 2, is ongoing in the UK to test the hypothesis that P/D and chemotherapy is superior to chemotherapy alone with respect to overall survival for patients with pleural mesothelioma. The trial will also examine a range of secondary outcomes including adverse health events and cost-effectiveness. If the results of this trial are negative, there will be reason to question if radical surgery, as opposed to palliative procedures such as PleurX catheter insertion, should continue to have a role in the treatment of mesothelioma.

This article will focus on the anesthetic management of radical pleurectomy/decortication, which is done via open thoracotomy with one-lung ventilation by double-lumen endotracheal tube. These procedures may last for eight hours or more, and typically involve substantial blood and fluid loss. Most centers send patients directly to ICU whether or not extubation is possible at the conclusion of surgery.

Preoperative management

  • Patient evaluation
System Considerations
Cardiovascular Consider stress testing, echocardiography; look for evidence of ventricular dysfunction, pulmonary hypertension, right heart strain from tumor involvement of pericardium
Hematologic Hypercoagulability due to underlying malignancy
Respiratory Pulmonary function testing; CT scan to evaluate extent of lung compression on the operative side, extent of pleural effusion
Neurologic Peripheral neuropathy due to chemotherapy; assess appropriateness for epidural analgesia
Renal Preexisting renal disease may worsen under stress of fluid shifts, blood loss, potential hypotension

Labs and studies

Operating room setup

Patient preparation and premedication

Regional and neuraxial techniques

Intraoperative management

Monitoring and access

Induction and airway management

Positioning

Maintenance and surgical considerations

Emergence

Postoperative management

Disposition

Pain management

Potential complications

Procedure variants

Variant 1 Variant 2
Unique considerations
Position
Surgical time
EBL
Postoperative disposition
Pain management
Potential complications

References

  1. Janes S, Alrefai D, Fennell D. Perspectives on the Treatment of Malignant Pleural Mesothelioma. N Engl J Med 2021; 385:1207-18. DOI: 10.1056/NEJMra1912719
  2. Wolf, Andrea S., Jonathan Daniel, and David J. Sugarbaker. “Surgical Techniques for Multimodality Treatment of Malignant Pleural Mesothelioma: Extrapleural Pneumonectomy and Pleurectomy/Decortication.” Seminars in Thoracic and Cardiovascular Surgery, Multimodality Management of Malignant Pleural Mesothelioma, 21, no. 2 (June 1, 2009): 132–48. https://doi.org/10.1053/j.semtcvs.2009.07.007.
  3. Ng, Ju-Mei, and Philip M. Hartigan. “Anesthetic Management of Patients Undergoing Extrapleural Pneumonectomy for Mesothelioma.” Current Opinion in Anesthesiology 21, no. 1 (February 2008): 21. https://doi.org/10.1097/ACO.0b013e3282f2a9c3.
  4. Lim E, Darlison L, Edwards J On behalf of MARS 2 Trialists, et al. Mesothelioma and Radical Surgery 2 (MARS 2): protocol for a multicentre randomised trial comparing (extended) pleurectomy decortication versus no (extended) pleurectomy decortication for patients with malignant pleural mesothelioma. BMJ Open 2020;10:e038892. doi: 10.1136/bmjopen-2020-038892
  5. Vlahu, Tedi, and Wicki T. Vigneswaran. “Pleurectomy and Decortication.” Annals of Translational Medicine 5, no. 11 (June 2017). https://doi.org/10.21037/atm.2017.04.03.
  6. Infante, Maurizio, Emanuela Morenghi, Edoardo Bottoni, Paolo Zucali, Daoud Rahal, Andrea Morlacchi, Anna Maria Ascolese, et al. “Comorbidity, Postoperative Morbidity and Survival in Patients Undergoing Radical Surgery for Malignant Pleural Mesothelioma.” European Journal of Cardio-Thoracic Surgery 50, no. 6 (December 2016): 1077–82. https://doi.org/10.1093/ejcts/ezw215.
  7. Vigneswaran, Wickii T., Diana Y. Kircheva, Vijayalakshimi Ananthanarayanan, Sydeaka Watson, Qudsia Arif, Amy Durkin Celauro, Hedy L. Kindler, and Aliya N. Husain. “Amount of Epithelioid Differentiation Is a Predictor of Survival in Malignant Pleural Mesothelioma.” The Annals of Thoracic Surgery 103, no. 3 (March 1, 2017): 962–66. https://doi.org/10.1016/j.athoracsur.2016.08.063.
  8. Sugarbaker, David J, and Andrea S Wolf. “Surgery for Malignant Pleural Mesothelioma.” Expert Review of Respiratory Medicine 4, no. 3 (June 2010): 363–72. https://doi.org/10.1586/ers.10.35.
  9. Neragi-Miandoab, Siyamek, Shoshana Weiner, and David J. Sugarbaker. “Incidence of Atrial Fibrillation after Extrapleural Pneumonectomy vs. Pleurectomy in Patients with Malignant Pleural Mesothelioma.” Interactive Cardiovascular and Thoracic Surgery 7, no. 6 (December 2008): 1039–42. https://doi.org/10.1510/icvts.2008.181099.
  10. Neragi-Miandoab, Siyamek, William G. Richards, and David J. Sugarbaker. “Morbidity, Mortality, Mean Survival, and the Impact of Histology on Survival after Pleurectomy in 64 Patients with Malignant Pleural Mesothelioma.” International Journal of Surgery (London, England) 6, no. 4 (August 2008): 293–97. https://doi.org/10.1016/j.ijsu.2008.04.004.