Difference between revisions of "Hip arthroplasty"
Nirav Kamdar (talk | contribs) (Changed main body of document.) |
Ashley Adams (talk | contribs) (main body changes) |
||
Line 55: | Line 55: | ||
Tranexamic acid prior to incision and at closure being used in greater frequency for blood loss control | Tranexamic acid prior to incision and at closure being used in greater frequency for blood loss control | ||
Antibiotics considerations: Beta-lactam (cefazolin) +/- glycopeptide (vancomycin) | |||
=== Patient preparation and premedication<!-- Describe any unique considerations for patient preparation and premedication. If none, this section may be removed. --> === | === Patient preparation and premedication<!-- Describe any unique considerations for patient preparation and premedication. If none, this section may be removed. --> === | ||
* Multimodal analgesic technique recommended. | * Multimodal analgesic technique recommended. | ||
* Preoperative COX-2 | * Preoperative COX-2 inhibitors, gabapentin, and acetaminophen can be considered. | ||
* Enhanced recovery protocols are using PO multimodal medications with | * Enhanced recovery protocols<ref>{{Cite journal|last=Wainwright|first=Thomas W.|last2=Gill|first2=Mike|last3=McDonald|first3=David A.|last4=Middleton|first4=Robert G.|last5=Reed|first5=Mike|last6=Sahota|first6=Opinder|last7=Yates|first7=Piers|last8=Ljungqvist|first8=Olle|date=2020-01-02|title=Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations|url=https://doi.org/10.1080/17453674.2019.1683790|journal=Acta Orthopaedica|volume=91|issue=1|pages=3–19|doi=10.1080/17453674.2019.1683790|issn=1745-3674|pmc=PMC7006728|pmid=31663402}}</ref> are using PO multimodal medications with greater frequency | ||
=== Regional and neuraxial techniques<!-- Describe any potential regional and/or neuraxial techniques which may be used for this case. If none, this section may be removed. --> === | === Regional and neuraxial techniques<!-- Describe any potential regional and/or neuraxial techniques which may be used for this case. If none, this section may be removed. --> === | ||
Line 98: | Line 100: | ||
=== Positioning<!-- Describe any unique positioning considerations, including potential intraoperative position changes. If none, this section may be removed. --> === | === Positioning<!-- Describe any unique positioning considerations, including potential intraoperative position changes. If none, this section may be removed. --> === | ||
{| class="wikitable" | |||
|+ | |||
!Surgical Approach | |||
!Lateral | |||
!Posterior | |||
!Anterior/Anterolateral | |||
|- | |||
|Position | |||
|Lateral decubitus | |||
|Lateral decubitus | |||
|Supine | |||
|- | |||
|Special Equipment | |||
|Axillary roll/bean bag | |||
|Axillary roll/bean bag | |||
|Hana Table | |||
Lower extremity attachment to Hana table | |||
|- | |||
|Positioning Concerns | |||
|Brachial plexus injury | |||
Neck positioning | |||
If lateral positioning, a beanbag and axillary roll are typically used. Additional blankets/pillows/foam will be needed for under the patients head (to ensure neutral positioning of cervical spine) and to cushion the upper extremities. Reassess padding of pressure points, eye/ear position, monitors, and PIV patency after positioning is complete and prior to case start. | Check PIV flow | ||
|Brachial plexus injury | |||
Neck positioning | |||
Check PIV flow | |||
| | |||
|} | |||
If lateral positioning, a beanbag and axillary roll are typically used. Additional blankets/pillows/foam will be needed for under the patients head (to ensure neutral positioning of cervical spine) and to cushion the upper extremities. Reassess padding of pressure points, eye/ear position, monitors, and PIV patency after positioning is complete and prior to case start. | |||
=== Maintenance and surgical considerations<!-- Describe the important considerations and general approach to the maintenance of anesthesia, including potential complications. Be sure to include any steps to the surgical procedure that have anesthetic implications. --> === | === Maintenance and surgical considerations<!-- Describe the important considerations and general approach to the maintenance of anesthesia, including potential complications. Be sure to include any steps to the surgical procedure that have anesthetic implications. --> === | ||
Line 111: | Line 140: | ||
=== Disposition<!-- List and/or describe the postoperative disposition and any special considerations for transport of patients for this case. --> === | === Disposition<!-- List and/or describe the postoperative disposition and any special considerations for transport of patients for this case. --> === | ||
Typically PACU. ICU disposition depending on acuity, comorbidities, and procedure planned (consider this especially with trauma patients or revision cases that have the potential for massive transfusion. | Typically PACU. | ||
Specialty centers are conducting same-day discharge for pre-screened populations with low-comorbidities and with adequate home support structure | |||
ICU disposition depending on acuity, comorbidities, and procedure planned (consider this especially with trauma patients or revision cases that have the potential for massive transfusion. | |||
=== Pain management<!-- Describe the expected level of postoperative pain and approaches to pain management for this case. --> === | === Pain management<!-- Describe the expected level of postoperative pain and approaches to pain management for this case. --> === | ||
Line 120: | Line 153: | ||
* Bone Cement Implantation Syndrome (BCIS)--if pressurized insertion of bone cement (methylmethacrylate) is used. Signs can range from mild hypoxia and hypotension to full cardiovascular collapse. Pathophysiology is incompletely understood, but is likely multifactorial in nature consisting of microembolic showering (of air, fat, bone, cement), histamine release/hypersensitivity, complement activation. Treatment is supportive (fluids, vasopressor support, and ACLS in complete cardiovascular collapse), therefore immediate recognition and intervention is important. | * Bone Cement Implantation Syndrome (BCIS)--if pressurized insertion of bone cement (methylmethacrylate) is used. Signs can range from mild hypoxia and hypotension to full cardiovascular collapse. Pathophysiology is incompletely understood, but is likely multifactorial in nature consisting of microembolic showering (of air, fat, bone, cement), histamine release/hypersensitivity, complement activation. Treatment is supportive (fluids, vasopressor support, and ACLS in complete cardiovascular collapse), therefore immediate recognition and intervention is important. | ||
* Venous Air Embolism (VAE) | * Venous Air Embolism (VAE) | ||
* Venous Fat Embolism | |||
* Blood Loss | * Blood Loss | ||
* DVT | * DVT | ||
Line 163: | Line 197: | ||
|see above | |see above | ||
|} | |} | ||
=== Enhanced Recovery after Surgery (ERAS): === | |||
== References == | == References == | ||
[[Category:Surgical procedures]] | [[Category:Surgical procedures]] |
Revision as of 10:02, 30 June 2021
Anesthesia type |
GA vs Neuraxial (spinal) |
---|---|
Airway |
ETT |
Lines and access |
large bore PIV x2, +/- arterial line |
Monitors |
Standard ASA |
Primary anesthetic considerations | |
Preoperative |
Standard |
Intraoperative |
Risk for bone cement implantation syndrome (BCIS) |
Postoperative |
Multimodal analgesia |
Article quality | |
Editor rating | |
User likes | 1 |
Hip arthroplasty (THA) has become one of the most common orthopedic surgical procedures performed since 1960, and it is often one of the most successful. Indications for total hip arthroplasty include osteoarthritis, traumatic arthritis, avascular necrosis, post-proximal fracture arthrosis, and congenital hip dislocation. It is typically performed in patients ages 60 and over, but has been performed in patients of all ages depending on etiology. Older patients tend to require hip arthroplasty for indications like hip fracture and subsequent arthrosis/arthritis, osteoarthritis, while patients of all ages may require hip arthroplasty for indications such as traumatic arthritis and (juvenile) rheumatoid arthritis.
Preoperative management
Patient evaluation
System | Considerations |
---|---|
Neurologic | RA pts: assess for cervical nerve root compression and antlanto-occipital instability. Imaging (lateral film XR) and exam performed as this will alter airway and positioning plans.
If regional planned: assess for presence of neurologic conditions (MS, neuropathies, existing nerve injuries) that may be relative contraindications |
Cardiovascular | Standard evaluation: more important for older patients with more cardiovascular risk factors. Often will need pharmacologic stress testing as pain and arthritis limit exercise capacity.
RA patients, consider increased risk for conduction abnormalities, valvular pathology (AR, valvular fibrosis), pericardial effusion. |
Respiratory | Standard exercise capacity evaluation. In obese patients, evaluate for OSA and potential for resultant pHTN. In RA patients, consider pulmonary fibrosis, effusions, glottic narrowing. For all patients with arthritis, evaluate mouth opening (arthriticTMJ). |
Gastrointestinal | Standard evaluation |
Hematologic | Consider patient anticoagulation status and direct for proper holding of anticoagulation, particularly as regional is used often in these cases. Preoperative hemoglobin should be obtained, as well as type and screen. Consider preoperative blood order (especially if revision). |
Renal | Preoperative kidney function (Cr, electrolytes) may be considered (effects on drug clearance; more important in geriatric populations). |
Endocrine | Standard evaluation |
Other | Consider home pain medication regimen; will help guide perioperative analgesic plan. |
Labs and studies
- Preoperative labwork, cardiac studies, and imaging will vary amongst patient populations. As in all cases, much of the preoperative studies will be based on individual patient H&P.
- At a minimum, all patients should have a preoperative hemoglobin and type and screen on file prior to case start.
- If procedure is to be a revision, strongly consider ordering preoperative packed red blood cells (PRBCs).
Operating room setup
Standard operating room setup. Airway setup, suction, IV setup, induction medications, emergency drugs, analgesic agents should be prepared and readily accessible.
Tranexamic acid prior to incision and at closure being used in greater frequency for blood loss control
Antibiotics considerations: Beta-lactam (cefazolin) +/- glycopeptide (vancomycin)
Patient preparation and premedication
- Multimodal analgesic technique recommended.
- Preoperative COX-2 inhibitors, gabapentin, and acetaminophen can be considered.
- Enhanced recovery protocols[1] are using PO multimodal medications with greater frequency
Regional and neuraxial techniques
Advantages to neuraxial and regional techniques:
- improved postoperative pain control
- decreased risk of DVT/PE
- decreased intraoperative blood loss.
Neuraxial techniques (particularly spinal anesthesia) have been used with success in patients undergoing THA. Especially beneficial in patients who may have a complicated or difficult airway.
Standard consideration of patient factors as they related to absolute/relative contraindications should be undertaken.
Time of procedure should also be considered, as spinal anesthesia has a limited duration of action (typically 2-3 hours, depending on agents used).
Intrathecal long-acting morphine can be considered for postoperative pain control with an understanding that patient selection is important for administration of this medication given the risk for respiratory depression and long duration of action.
Single shot peripheral regional nerve blocks can be used to improve postoperative analgesia, but are not sufficient as a primary anesthetic. Patients must be able to assume the position required to place these blocks. Blocks used include:
- femoral
- lumbar plexus
- quadratus lumborum (QL)
- fascia iliaca
Intraoperative management
Monitoring and access
Standard ASA monitoring. Consider addition of intraoperative EEG monitoring.
2 large-bore PIV should be obtained. Arterial line for hemodynamic monitoring should be considered for revision procedures, cases with predicted significant blood loss, and for patients with significant cardiopulmonary disease.
Induction and airway management
Induction can be tailored to individual patient comorbidities and acuity. RSI induction is indicated for trauma patients or those without proper fasting per ASA guidelines. For patients with rheumatoid arthritis, special consideration should be given to the airway and potential for cervical (atlanto-occipital) instability. In these cases, videolaryngoscopy or fiberoptic intubation should be considered and utilized.
Induction and intubation on the preoperative bed prior to moving to the operating room table should be considered if possible for patients in whom it would cause significant pain (and resultant physiologic and emotional stress) to execute this move.
Positioning
Surgical Approach | Lateral | Posterior | Anterior/Anterolateral |
---|---|---|---|
Position | Lateral decubitus | Lateral decubitus | Supine |
Special Equipment | Axillary roll/bean bag | Axillary roll/bean bag | Hana Table
Lower extremity attachment to Hana table |
Positioning Concerns | Brachial plexus injury
Neck positioning Check PIV flow |
Brachial plexus injury
Neck positioning Check PIV flow |
If lateral positioning, a beanbag and axillary roll are typically used. Additional blankets/pillows/foam will be needed for under the patients head (to ensure neutral positioning of cervical spine) and to cushion the upper extremities. Reassess padding of pressure points, eye/ear position, monitors, and PIV patency after positioning is complete and prior to case start.
Maintenance and surgical considerations
Standard maintenance. Neuromuscular blockade required if GA, as this facilitates good operating conditions and allows the surgical team to properly test and place the prostethic(s).
Emergence
Standard emergence. PONV prophylaxis dependent on patient risk factors, usually ondansetron 4mg IV.
Postoperative management
Disposition
Typically PACU.
Specialty centers are conducting same-day discharge for pre-screened populations with low-comorbidities and with adequate home support structure
ICU disposition depending on acuity, comorbidities, and procedure planned (consider this especially with trauma patients or revision cases that have the potential for massive transfusion.
Pain management
Multimodal regimen, consider long-acting opioid agents if no contraindications or risk factors (pulmonary status). Ketamine bolus at induction or low-dose continuous infusion can act as analgesic adjunct. Consider supplementing with single shot peripheral nerve block (fascia iliaca, QL, lumbar plexus, femoral) if no contraindications and patient can tolerate positioning required for block.
Potential complications
- Bone Cement Implantation Syndrome (BCIS)--if pressurized insertion of bone cement (methylmethacrylate) is used. Signs can range from mild hypoxia and hypotension to full cardiovascular collapse. Pathophysiology is incompletely understood, but is likely multifactorial in nature consisting of microembolic showering (of air, fat, bone, cement), histamine release/hypersensitivity, complement activation. Treatment is supportive (fluids, vasopressor support, and ACLS in complete cardiovascular collapse), therefore immediate recognition and intervention is important.
- Venous Air Embolism (VAE)
- Venous Fat Embolism
- Blood Loss
- DVT
- Femoral Fracture
Procedure variants
Unipolar or Bipolar | Revision of THA | |
---|---|---|
Unique considerations | unipolar: only femoral head replaced
bipolar: femoral and acetabular side are both replaced |
blood loss |
Position | supine vs lateral decubitus (surgical side up)* | -- |
Surgical time | 2-3hrs | 3+ hours |
EBL | 250-750cc | >1000cc |
Postoperative disposition | PACU | PACU vs ICU (depending on transfusion needs or acuity may need to remain intubated) |
Pain management | multimodal | multimodal; if infected prosthetic, regional may be avoided depending on extent of infection, overlying infected tissue. |
Potential complications | see above | see above |
Enhanced Recovery after Surgery (ERAS):
References
- ↑ Wainwright, Thomas W.; Gill, Mike; McDonald, David A.; Middleton, Robert G.; Reed, Mike; Sahota, Opinder; Yates, Piers; Ljungqvist, Olle (2020-01-02). "Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations". Acta Orthopaedica. 91 (1): 3–19. doi:10.1080/17453674.2019.1683790. ISSN 1745-3674. PMC 7006728. PMID 31663402.CS1 maint: PMC format (link)