Difference between revisions of "Hyperthermic intraperitoneal chemotherapy surgery"

From WikiAnesthesia
(Updated preoperative management.)
m (Added GI consideration, minor formatting fixes)
 
(22 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Infobox surgical case reference
{{Infobox surgical procedure
| anesthesia_type = General
| anesthesia_type = General
| airway = ETT
| airway = ETT
| lines_access = Large bore PIV X2
| lines_access = Large bore IV x2
Central venous access
Arterial line
Nasogastric tube
Central line
| monitors = Standard ASA monitors
NG tube
Arterial Line (consider cardiac output monitoring)
| monitors = Standard
Central venous pressure
5-lead ECG
ABP
| considerations_preoperative = Baseline renal function
| considerations_preoperative = Baseline renal function
Electrolyte status
Electrolyte status
Line 22: Line 23:
Prolonged vasoplegia  
Prolonged vasoplegia  
Sodium thiosulfate infusion (12 hrs)
Sodium thiosulfate infusion (12 hrs)
}}Cytoreductive surgery and Hyperthermic Intraperitoneal Chemoperfusion (HIPEC) is a combined procedure utilized to treat peritoneal surface cancers.<ref name=":0">{{Cite journal|last=Webb|first=Christopher Allen-John|last2=Weyker|first2=Paul David|last3=Moitra|first3=Vivek K.|last4=Raker|first4=Richard K.|date=2013-04|title=An overview of cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion for the anesthesiologist|url=https://pubmed.ncbi.nlm.nih.gov/23460568|journal=Anesthesia and Analgesia|volume=116|issue=4|pages=924–931|doi=10.1213/ANE.0b013e3182860fff|issn=1526-7598|pmid=23460568}}</ref> These cancers include secondary peritoneal carcinomatosis, pseudomyxoma peritonei and primary peritoneal tumors.<ref name=":0" /><ref>{{Cite journal|last=Macrì|first=Antonio|date=2010-01-15|title=New approach to peritoneal surface malignancies|url=https://pubmed.ncbi.nlm.nih.gov/21160811|journal=World Journal of Gastrointestinal Oncology|volume=2|issue=1|pages=9–11|doi=10.4251/wjgo.v2.i1.9|issn=1948-5204|pmc=2999159|pmid=21160811}}</ref>  Cytoreductive surgery involves debulking the majority of tumors until the remainder are small enough to ensure adequate efficacy with HIPEC.  
}}'''Hyperthermic intraperitoneal chemotherapy surgery (HIPEC)''' and '''cytoreductive surgery''' is a combined procedure utilized to treat peritoneal surface cancers.<ref name=":0">{{Cite journal|last=Webb|first=Christopher Allen-John|last2=Weyker|first2=Paul David|last3=Moitra|first3=Vivek K.|last4=Raker|first4=Richard K.|date=2013|title=An overview of cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion for the anesthesiologist|url=https://pubmed.ncbi.nlm.nih.gov/23460568|journal=Anesthesia and Analgesia|volume=116|issue=4|pages=924–931|doi=10.1213/ANE.0b013e3182860fff|issn=1526-7598|pmid=23460568|via=}}</ref> These cancers include secondary peritoneal carcinomatosis, pseudomyxoma peritonei and primary peritoneal tumors.<ref name=":0" /><ref>{{Cite journal|last=Macrì|first=Antonio|date=2010-01-15|title=New approach to peritoneal surface malignancies|url=https://pubmed.ncbi.nlm.nih.gov/21160811|journal=World Journal of Gastrointestinal Oncology|volume=2|issue=1|pages=9–11|doi=10.4251/wjgo.v2.i1.9|issn=1948-5204|pmc=2999159|pmid=21160811}}</ref>  Cytoreductive surgery involves debulking the majority of tumors until the remainder are small enough to ensure adequate efficacy with HIPEC.


HIPEC involves infusing heated cytotoxic chemotherapeutic drugs directly into the surgical site in order to effectively penetrate involved cancer while limiting exposure to normal tissue and decrease systemic uptake.<ref name=":0" /><ref name=":1">{{Cite journal|last=Schmidt|first=C.|last2=Moritz|first2=S.|last3=Rath|first3=S.|last4=Grossmann|first4=E.|last5=Wiesenack|first5=C.|last6=Piso|first6=P.|last7=Graf|first7=B. M.|last8=Bucher|first8=M.|date=2009-09-15|title=Perioperative management of patients with cytoreductive surgery for peritoneal carcinomatosis|url=https://pubmed.ncbi.nlm.nih.gov/19697426|journal=Journal of Surgical Oncology|volume=100|issue=4|pages=297–301|doi=10.1002/jso.21322|issn=1096-9098|pmid=19697426}}</ref><ref>{{Cite journal|last=Al-Shammaa|first=Hassan-Alaa-Hammed|last2=Li|first2=Yan|last3=Yonemura|first3=Yutaka|date=2008-02-28|title=Current status and future strategies of cytoreductive surgery plus intraperitoneal hyperthermic chemotherapy for peritoneal carcinomatosis|url=https://pubmed.ncbi.nlm.nih.gov/18300340|journal=World Journal of Gastroenterology|volume=14|issue=8|pages=1159–1166|doi=10.3748/wjg.14.1159|issn=1007-9327|pmc=2690662|pmid=18300340}}</ref> This may be performed in a closed abdomen via perfusion circuit or an open abdomen +/- cavity expanders.<ref>{{Cite journal|last=Witkamp|first=A. J.|last2=de Bree|first2=E.|last3=Van Goethem|first3=R.|last4=Zoetmulder|first4=F. A.|date=2001-12|title=Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy|url=https://pubmed.ncbi.nlm.nih.gov/11908929|journal=Cancer Treatment Reviews|volume=27|issue=6|pages=365–374|doi=10.1053/ctrv.2001.0232|issn=0305-7372|pmid=11908929}}</ref>  An open abdomen technique may reduce increased intraabdominal pressures and prevent reuse of the cytotoxic solution.  However, the closed abdomen technique reduces risk of exposure of the medications to the OR staff.  
HIPEC involves infusing heated cytotoxic chemotherapeutic drugs directly into the surgical site in order to effectively penetrate involved cancer while limiting exposure to normal tissue and decrease systemic uptake.<ref name=":0" /><ref name=":1">{{Cite journal|last=Schmidt|first=C.|last2=Moritz|first2=S.|last3=Rath|first3=S.|last4=Grossmann|first4=E.|last5=Wiesenack|first5=C.|last6=Piso|first6=P.|last7=Graf|first7=B. M.|last8=Bucher|first8=M.|date=2009-09-15|title=Perioperative management of patients with cytoreductive surgery for peritoneal carcinomatosis|url=https://pubmed.ncbi.nlm.nih.gov/19697426|journal=Journal of Surgical Oncology|volume=100|issue=4|pages=297–301|doi=10.1002/jso.21322|issn=1096-9098|pmid=19697426}}</ref><ref>{{Cite journal|last=Al-Shammaa|first=Hassan-Alaa-Hammed|last2=Li|first2=Yan|last3=Yonemura|first3=Yutaka|date=2008-02-28|title=Current status and future strategies of cytoreductive surgery plus intraperitoneal hyperthermic chemotherapy for peritoneal carcinomatosis|url=https://pubmed.ncbi.nlm.nih.gov/18300340|journal=World Journal of Gastroenterology|volume=14|issue=8|pages=1159–1166|doi=10.3748/wjg.14.1159|issn=1007-9327|pmc=2690662|pmid=18300340}}</ref> This may be performed in a closed abdomen via perfusion circuit or an open abdomen +/- cavity expanders (sometimes referred to as the Coliseum technique<ref>{{Cite journal|last=Rodríguez Silva|first=Cristina|last2=Moreno Ruiz|first2=Francisco Javier|last3=Bellido Estévez|first3=Inmaculada|last4=Carrasco Campos|first4=Joaquin|last5=Titos García|first5=Alberto|last6=Ruiz López|first6=Manuel|last7=González Poveda|first7=Ivan|last8=Toval Mata|first8=Jose Antonio|last9=Mera Velasco|first9=Santiago|last10=Santoyo Santoyo|first10=Julio|date=2017-02-21|title=Are there intra-operative hemodynamic differences between the Coliseum and closed HIPEC techniques in the treatment of peritoneal metastasis? A retrospective cohort study|url=https://pubmed.ncbi.nlm.nih.gov/28222738|journal=World Journal of Surgical Oncology|volume=15|issue=1|pages=51|doi=10.1186/s12957-017-1119-2|issn=1477-7819|pmc=5320712|pmid=28222738}}</ref>).<ref>{{Cite journal|last=Witkamp|first=A. J.|last2=de Bree|first2=E.|last3=Van Goethem|first3=R.|last4=Zoetmulder|first4=F. A.|date=2001|title=Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy|url=https://pubmed.ncbi.nlm.nih.gov/11908929|journal=Cancer Treatment Reviews|volume=27|issue=6|pages=365–374|doi=10.1053/ctrv.2001.0232|issn=0305-7372|pmid=11908929|via=}}</ref>  Compared to a closed abdomen approach, an open abdomen technique may reduce intraabdominal pressures and prevent reuse of the cytotoxic solution.  However, the closed abdomen technique reduces risk of exposure of the medications to the OR staff.


Important perioperative considerations include temperature management, cardiovascular management, intra-abdominal pressures, metabolic derangements (depending on carrier solution of chemotherapeutic agent), potential toxicities (see table below), coagulopathy, fluid/renal management and pain management.<ref name=":0" /><ref name=":1" />  
Important perioperative considerations include temperature management, cardiovascular management, intra-abdominal pressures, metabolic derangements (depending on carrier solution of chemotherapeutic agent), potential chemotherapeutic toxicities (see table below), coagulopathy, fluid/renal management and pain management.<ref name=":0" /><ref name=":1" />  


Intraoperatively, OR staff may be exposed to cytotoxic agents due to high concentrations of chemotherapeutic medications, long case duration,  and smoke and or mechanical exposure. Pregnant or those actively planning for pregnancy, those with a history of congenital malformations or abortions should carefully consider participation in HIPEC cases. Safety precautions including high-power filtration masks, eye protection, gloves, and standard universal precautions should always be heeded.<ref>{{Cite journal|last=González-Moreno|first=Santiago|last2=González-Bayón|first2=Luis|last3=Ortega-Pérez|first3=Gloria|date=2012-10|title=Hyperthermic intraperitoneal chemotherapy: methodology and safety considerations|url=https://pubmed.ncbi.nlm.nih.gov/23021715|journal=Surgical Oncology Clinics of North America|volume=21|issue=4|pages=543–557|doi=10.1016/j.soc.2012.07.001|issn=1558-5042|pmid=23021715}}</ref>
Although HIPEC surgery is generally safe to participate in as an anesthesia provider, intraoperative OR staff may be exposed to cytotoxic agents due to high concentrations of chemotherapeutic medications, long case duration,  and smoke and or mechanical exposure. Pregnant or those actively planning for pregnancy, those with a history of congenital malformations or abortions should carefully consider participation in HIPEC cases. Safety precautions including high-power filtration masks, eye protection, gloves, and standard universal precautions should always be heeded.<ref>{{Cite journal|last=González-Moreno|first=Santiago|last2=González-Bayón|first2=Luis|last3=Ortega-Pérez|first3=Gloria|date=2012|title=Hyperthermic intraperitoneal chemotherapy: methodology and safety considerations|url=https://pubmed.ncbi.nlm.nih.gov/23021715|journal=Surgical Oncology Clinics of North America|volume=21|issue=4|pages=543–557|doi=10.1016/j.soc.2012.07.001|issn=1558-5042|pmid=23021715|via=}}</ref>


== Preoperative management ==
== Preoperative management ==


=== Cytotoxic Agents ===
=== Cytotoxic Agents<ref name=":0" /><ref>{{Cite book|url=https://www.worldcat.org/oclc/751669717|title=Cancer chemotherapy and biotherapy : principles and practice|date=2011|publisher=Wolters Kluwer Health/Lippincott Williams & Wilkins|others=Bruce Chabner, Dan L. Longo|isbn=1605474312|edition=5th|location=Philadelphia|oclc=751669717|last=|first=|year=|pages=}}</ref> ===
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 50: Line 51:
Anaphylaxis
Anaphylaxis
|-
|-
|Mitomycin C
|Mitomycin C  
(MMC)
|Myelosupression
|Myelosupression
Pulmonary/interstitial pneumonitis
Pulmonary/interstitial pneumonitis
Line 91: Line 93:
|Cardiomyopathy risk based upon chemotherapy agents used
|Cardiomyopathy risk based upon chemotherapy agents used
|-
|-
|Respiratory
|Pulmonary
|Pneumonitis based upon chemotherapy agents used
|Pneumonitis based upon chemotherapy agents used
|-
|-
|Gastrointestinal
|Gastrointestinal
|
|Hypoalbuminemia associated with a higher major morbidity<ref>{{Cite journal|last=Seretis|first=Charalampos|last2=Gill|first2=Jagjit|last3=Malik|first3=Adnan|last4=Elhassan|first4=Ali Mohamed|last5=Shariff|first5=Umar|last6=Youssef|first6=Haney|date=2020-12|title=Low Preoperative Serum Albumin Levels Are Associated With Impaired Outcome After Cytoreductive Surgery and Perioperative Intraperitoneal Chemotherapy for Peritoneal Surface Malignancies|url=https://pubmed.ncbi.nlm.nih.gov/33447310/|journal=Journal of Clinical Medicine Research|volume=12|issue=12|pages=773–779|doi=10.14740/jocmr4362|issn=1918-3003|pmc=7781284|pmid=33447310}}</ref>
|-
|-
|Hematologic
|Hematologic
Line 119: Line 121:
* CMP (particularly renal function and electrolytes)
* CMP (particularly renal function and electrolytes)
* CBC (identify and correct anemia)
* CBC (identify and correct anemia)
**If Hg > 9 g/dL, consider prehabilitation
* Consider pre-albumin to evaluate nutrition status


=== Operating room setup<!-- Describe any unique aspects of operating room preparation. Avoid excessively granular information. Use drug classes instead of specific drugs when appropriate. If none, this section may be removed. --> ===
=== Operating room setup<!-- Describe any unique aspects of operating room preparation. Avoid excessively granular information. Use drug classes instead of specific drugs when appropriate. If none, this section may be removed. --> ===
Line 124: Line 128:
* Fluid warmer
* Fluid warmer
* Arterial line setup
* Arterial line setup
* ± Central line
* Central line vs. 2 large bore IVs
* ± Cardiac output monitor (i.e. Flowtrack)
* ± Cardiac output monitor (i.e. Flowtrack)
* NG tube
* NG or OG tube
* Vasopressor drips
* Vasopressor drips
**Norepinephrine
**Vasopressin
**Phenylephrine
* Blood products  
* Blood products  
**2 units pRBCs


=== Patient preparation and premedication<!-- Describe any unique considerations for patient preparation and premedication. If none, this section may be removed. --> ===
=== Patient preparation and premedication<!-- Describe any unique considerations for patient preparation and premedication. If none, this section may be removed. --> ===
Line 137: Line 145:
=== Regional and neuraxial techniques<!-- Describe any potential regional and/or neuraxial techniques which may be used for this case. If none, this section may be removed. --> ===
=== Regional and neuraxial techniques<!-- Describe any potential regional and/or neuraxial techniques which may be used for this case. If none, this section may be removed. --> ===


* Epidural or paravertebral blocks (if epidural is contraindicated)
* Epidural or paravertebral blocks (if epidural is contraindicated).
*Erector Spinae block could potentially be used (minimal data at this time; only case reports).


== Intraoperative management ==
== Intraoperative management ==
Line 144: Line 153:


* Multiple large-bore PIVs (for active fluid resuscitation)
* Multiple large-bore PIVs (for active fluid resuscitation)
* ± Rapid infusion catheter
* ± Rapid infusion catheter (RIC)
* Arterial line
* Arterial line
* ± Central venous catheter
* ± Central venous catheter (8 Fr double-lumen, 8.5 Fr single-lumen Cordis, or 9 Fr double-lumen MAC Cordis)


=== Induction and airway management<!-- Describe the important considerations and general approach to the induction of anesthesia and how the airway is typically managed for this case. --> ===
=== Induction and airway management<!-- Describe the important considerations and general approach to the induction of anesthesia and how the airway is typically managed for this case. --> ===


* General anesthesia with ETT
* General anesthesia with ETT
*No special precautions
*Paralysis preferred


=== Surgical Timeout Communication ===
=== Surgical Timeout Communication ===
Line 157: Line 168:
# Patient Risk Factors
# Patient Risk Factors
# DVT prophylaxis
# DVT prophylaxis
# Fluid Goals
# Fluid Goals  
# Confirm urine output goals for <u>cisplatin only</u>
# Body Temperature Management plus additional monitors (esophageal, nasopharyngeal, bladder, axillary, etc)
# Body Temperature Management plus additional monitors (esophageal, nasopharyngeal, bladder, axillary, etc)
# Type of chemotherapy agent used, including dilution solution and its implications on electrolytes
# Type of chemotherapy agent used, including dilution solution and its implications on electrolytes
Line 169: Line 181:


=== Maintenance and surgical considerations<!-- Describe the important considerations and general approach to the maintenance of anesthesia, including potential complications. Be sure to include any steps to the surgical procedure that have anesthetic implications. --> ===
=== Maintenance and surgical considerations<!-- Describe the important considerations and general approach to the maintenance of anesthesia, including potential complications. Be sure to include any steps to the surgical procedure that have anesthetic implications. --> ===
===== <u>Pre-cytoreductive phase</u> =====
* Check baseline electrolytes
* Fluid resuscitation to maintain euvolemia: consider arterial line and cardiac output monitoring to guide fluid resuscitation and avoid over-resuscitation
===== <u>Cytoreductive Phase</u> =====
* Check ABG and base deficit q1hour
* Check coagulation status q4 hours
* Resuscitate with lactated ringers or plasma-lyte (Avoid normal saline)
* Consider albumin administration for intravascular fluids
* Maintain normothermia to mild hypothermia (target temp 35-36.5 °C)
* Monitor urine output and evaluate volume status. If UOP less than 0.5 mL/kg/hr - Consider vasopressin or norepinephrine to maintain MAP if patient is hypotensive but not hypovolemic
* Obtain pre-HIPEC chemistries (Na+, K+, Mg2+, Ca2+)<ref>{{Cite journal|last=Rothfield|first=Kenneth P.|last2=Crowley|first2=Kathy|date=2012|title=Anesthesia considerations during cytoreductive surgery and hyperthermic intraperitoneal chemotherapy|url=https://pubmed.ncbi.nlm.nih.gov/23021714|journal=Surgical Oncology Clinics of North America|volume=21|issue=4|pages=533–541|doi=10.1016/j.soc.2012.07.003|issn=1558-5042|pmid=23021714|via=}}</ref>
===== <u>HIPEC Phase</u> =====
* Maintain good muscle relaxation
* Intra-abdominal pressure may be elevated up to 26 mm Hg
** Maintain abdominal perfusion pressure of >60 (MAP – IAP)
* Manage ventilation to maintain normocarbia and normoxia
* Avoid hypervolemia during high volume resuscitation
* Check ABG and base deficit q30min to q1hour
** Treat hyperglycemia (>200) with insulin drip
** Treat hyponatremia
*** Diuretics for hypervolemia
*** Volume resuscitate for hypovolemia; consider hypertonic saline if Na<130
* Check electrolytes (Na+, K+, Mg2+, Ca2+) during HIPEC phase
* Continue to check coagulation factors q4 hour
* Goal intraperitoneal tissue temperature: 41-43 °C
* Watch for core temperature >39.5 °C
** Consider passive cooling vs active cooling with ice
** Consider cooling intraperitoneal fluids
* Cisplatin Perfusion ONLY:
** sodium thiosulfate bolus at start of chemoperfusion
** Sodium thiosulfate drip starts immediately after bolus over 12 hrs
** Crystalloid (avoid NS) to maintain urine output > 100mL/hr through the end of case and into PACU / ICU


=== Emergence<!-- List and/or describe any important considerations related to the emergence from anesthesia for this case. --> ===
=== Emergence<!-- List and/or describe any important considerations related to the emergence from anesthesia for this case. --> ===
* After fascia is closed, check twitches and reverse paralysis
* Plan for extubation if hemodynamically stable, normothermic and normoxic.


== Postoperative management ==
== Postoperative management ==


=== Disposition<!-- List and/or describe the postoperative disposition and any special considerations for transport of patients for this case. --> ===
=== Disposition<!-- List and/or describe the postoperative disposition and any special considerations for transport of patients for this case. --> ===
* Admit to ICU (consider discussion with ICU team and surgeon beforehand)
* UOP Goals: UOP 100 mL/hr (for <u>Cisplatin</u> only)
* May require pressors due to prolonged vasoplegia postoperatively
* Continue Sodium thiosulfate drip over 12 hours from start of perfusion (for <u>cisplatin</u> only)


=== Pain management<!-- Describe the expected level of postoperative pain and approaches to pain management for this case. --> ===
=== Pain management<!-- Describe the expected level of postoperative pain and approaches to pain management for this case. --> ===


=== Potential complications<!-- List and/or describe any potential postoperative complications for this case. --> ===
* PCEA
* IV acetaminophen
* ketoralac (if perfusion with MMC, no pre-existing kidney disease)
 
=== Potential complications ===
 
* variable
* <u>surgical complications</u>: anastomotic leakage, bleeding, infection;
* <u>medical / chemo-related</u>: myelosuppression (MMC),
* nephrotoxicity (Cisplatin)


== Procedure variants<!-- This section should only be used for cases with multiple approaches (e.g. Laparoscopic vs. open appendectomy). Otherwise, remove this section. Use this table to very briefly compare and contrast various aspects between approaches. Add or remove rows as needed to maximize relevance. Consider using symbols rather than words when possible (e.g. +, –, additional symbols such as ↑ and ↓ are available using the "Ω" tool in the editor). --> ==
== Procedure variants<!-- This section should only be used for cases with multiple approaches (e.g. Laparoscopic vs. open appendectomy). Otherwise, remove this section. Use this table to very briefly compare and contrast various aspects between approaches. Add or remove rows as needed to maximize relevance. Consider using symbols rather than words when possible (e.g. +, –, additional symbols such as ↑ and ↓ are available using the "Ω" tool in the editor). --> ==
 
{| class="wikitable wikitable-horizontal-scroll"
{| class="wikitable"
|+
!
!
!Variant 1
!Open Abdominal
!Variant 2
Perfusion
!Closed Abdominal
Perfusion
!Peritoneal Cavity
Expander
|-
|-
|Unique considerations
|Unique considerations
|
|
|Decreased exposure and inhalation of chemotherapeutic agents
High intrabdominal pressures
|
|
|-
|-
|Position
|Position
|
|
|Supine or low-lithotomy
|
|
|-
|-
|Surgical time
|Surgical time
|
|
|Variable, dependent on extent of tumor and resection
|
|-
|Perfusion Time
|
|Cisplatin: 90 minutes
MMC: 100 minutes
|
|
|-
|-
|EBL
|EBL
|
|
|Variable, dependent on extent of tumor and resection
|
|
|-
|-
|Postoperative disposition
|Postoperative disposition
|
|
|ICU
|
|
|-
|-
|Pain management
|Pain management
|
|
|PCEA, IV acetaminophen
Consider ketoralac if:
* Perfusion with MMC
* No kidney disease
|
|
|-
|-
|Potential complications
|Potential complications
|
|Surgical complications:
* Anastomotic leakage
* Bleeding
* Infection
Medical / chemo-related:
* Myelosuppression (MMC)
* Nephrotoxicity (Cisplatin)
|
|}
=== Enhanced Recovery After Surgery ===
{| class="wikitable"
|+
!Attribute
!Mayo Clinic<ref>{{Cite journal|last=Webb|first=Christopher|last2=Day|first2=Ryan|last3=Velazco|first3=Cristine S.|last4=Pockaj|first4=Barbara A.|last5=Gray|first5=Richard J.|last6=Stucky|first6=Chee-Chee|last7=Young-Fadok|first7=Tonia|last8=Wasif|first8=Nabil|date=2020|title=Implementation of an Enhanced Recovery After Surgery (ERAS) Program is Associated with Improved Outcomes in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy|url=https://pubmed.ncbi.nlm.nih.gov/31605328|journal=Annals of Surgical Oncology|volume=27|issue=1|pages=303–312|doi=10.1245/s10434-019-07900-z|issn=1534-4681|pmid=31605328|via=}}</ref>
!
!
|-
|Nutrition
|Protein and carbohydrate supplementation
|
|
|-
|Intravenous Fluids
|Goal directed (UOP of 0.5 mL/kg/h)
|
|
|-
|Pain Control
|Multimodal pain therapy + TAP block
|
|
|-
|Oral Intake
|Clear liquid on POD 0
No NGT tube
|
|
|-
|Drains & Tubes
|Only when indicated
|
|
|-
|Post-op Disposition
|Step-down unit
|
|
|
|
Line 220: Line 357:


[[Category:Surgical procedures]]
[[Category:Surgical procedures]]
<references />
[[Category:General surgery]]

Latest revision as of 08:07, 29 November 2022

Hyperthermic intraperitoneal chemotherapy surgery
Anesthesia type

General

Airway

ETT

Lines and access

Large bore IV x2 Arterial line Central line NG tube

Monitors

Standard 5-lead ECG ABP

Primary anesthetic considerations
Preoperative

Baseline renal function Electrolyte status Anemia Prehabilitation Nutrition optimization

Intraoperative

Hemodynamic monitoring Active fluid resuscitation Normothermia or mild hypothermia Pre-HIPEC electrolytes HIPEC-phase electrolytes

Postoperative

Maintain urine output Consider ICU admission Prolonged vasoplegia Sodium thiosulfate infusion (12 hrs)

Article quality
Editor rating
Comprehensive
User likes
0

Hyperthermic intraperitoneal chemotherapy surgery (HIPEC) and cytoreductive surgery is a combined procedure utilized to treat peritoneal surface cancers.[1] These cancers include secondary peritoneal carcinomatosis, pseudomyxoma peritonei and primary peritoneal tumors.[1][2]  Cytoreductive surgery involves debulking the majority of tumors until the remainder are small enough to ensure adequate efficacy with HIPEC.

HIPEC involves infusing heated cytotoxic chemotherapeutic drugs directly into the surgical site in order to effectively penetrate involved cancer while limiting exposure to normal tissue and decrease systemic uptake.[1][3][4] This may be performed in a closed abdomen via perfusion circuit or an open abdomen +/- cavity expanders (sometimes referred to as the Coliseum technique[5]).[6]  Compared to a closed abdomen approach, an open abdomen technique may reduce intraabdominal pressures and prevent reuse of the cytotoxic solution.  However, the closed abdomen technique reduces risk of exposure of the medications to the OR staff.

Important perioperative considerations include temperature management, cardiovascular management, intra-abdominal pressures, metabolic derangements (depending on carrier solution of chemotherapeutic agent), potential chemotherapeutic toxicities (see table below), coagulopathy, fluid/renal management and pain management.[1][3]

Although HIPEC surgery is generally safe to participate in as an anesthesia provider, intraoperative OR staff may be exposed to cytotoxic agents due to high concentrations of chemotherapeutic medications, long case duration,  and smoke and or mechanical exposure. Pregnant or those actively planning for pregnancy, those with a history of congenital malformations or abortions should carefully consider participation in HIPEC cases. Safety precautions including high-power filtration masks, eye protection, gloves, and standard universal precautions should always be heeded.[7]

Preoperative management

Cytotoxic Agents[1][8]

Chemotherapeutic

agent

End-organ toxicity
Platinum

(cisplatin/oxaliplatin)

Nephrotoxicity (hypomagnesemia/hypocalemia)

Nausea/Vomiting

Neurotoxicity (Peripheral neuropathy, seizure, ototoxcity, blindness)

Myelosupression

Anaphylaxis

Mitomycin C

(MMC)

Myelosupression

Pulmonary/interstitial pneumonitis

nausea/vomiting/diarrhea

cardiomyopathy

hemolytic uremic syndrome

5-Fluropyrimidines GI ulcers

myelosuppression

rashes, keratitis, ataxia, cognitive dysfunction

coronary spasm

biliary sclerosis

Anthracyclines

(doxorubicin)

Myelosuppression

GI mucositis

Cardiomyopathy

Patient evaluation

System Considerations
Neurologic Neurologic dysfunction risk based upon chemotherapy agents used
Cardiovascular Cardiomyopathy risk based upon chemotherapy agents used
Pulmonary Pneumonitis based upon chemotherapy agents used
Gastrointestinal Hypoalbuminemia associated with a higher major morbidity[9]
Hematologic Risk of profound anemia
Renal Renal dysfunction based upon chemotherapy used.

Monitor creatinine and GFR

Abnormal electrolytes

Endocrine
Other Patients may need nutrition optimization prior to surgery

Patients can benefit from active prehabilitation prior to surgery

Labs and studies

  • CMP (particularly renal function and electrolytes)
  • CBC (identify and correct anemia)
    • If Hg > 9 g/dL, consider prehabilitation
  • Consider pre-albumin to evaluate nutrition status

Operating room setup

  • Fluid warmer
  • Arterial line setup
  • Central line vs. 2 large bore IVs
  • ± Cardiac output monitor (i.e. Flowtrack)
  • NG or OG tube
  • Vasopressor drips
    • Norepinephrine
    • Vasopressin
    • Phenylephrine
  • Blood products
    • 2 units pRBCs

Patient preparation and premedication

  • Preoperative nutrition consult
  • Preoperative prehabilitation plan

Regional and neuraxial techniques

  • Epidural or paravertebral blocks (if epidural is contraindicated).
  • Erector Spinae block could potentially be used (minimal data at this time; only case reports).

Intraoperative management

Monitoring and access

  • Multiple large-bore PIVs (for active fluid resuscitation)
  • ± Rapid infusion catheter (RIC)
  • Arterial line
  • ± Central venous catheter (8 Fr double-lumen, 8.5 Fr single-lumen Cordis, or 9 Fr double-lumen MAC Cordis)

Induction and airway management

  • General anesthesia with ETT
  • No special precautions
  • Paralysis preferred

Surgical Timeout Communication

Operative goals are crucial to delineate with the surgical team prior to incision. Key discussion points include:

  1. Patient Risk Factors
  2. DVT prophylaxis
  3. Fluid Goals
  4. Confirm urine output goals for cisplatin only
  5. Body Temperature Management plus additional monitors (esophageal, nasopharyngeal, bladder, axillary, etc)
  6. Type of chemotherapy agent used, including dilution solution and its implications on electrolytes
  7. Consideration for further renal protection therapy
  8. Trigger for blood transfusion
  9. Preoperative antibiotic choice

Positioning

  • Supine

Maintenance and surgical considerations

Pre-cytoreductive phase
  • Check baseline electrolytes
  • Fluid resuscitation to maintain euvolemia: consider arterial line and cardiac output monitoring to guide fluid resuscitation and avoid over-resuscitation
Cytoreductive Phase
  • Check ABG and base deficit q1hour
  • Check coagulation status q4 hours
  • Resuscitate with lactated ringers or plasma-lyte (Avoid normal saline)
  • Consider albumin administration for intravascular fluids
  • Maintain normothermia to mild hypothermia (target temp 35-36.5 °C)
  • Monitor urine output and evaluate volume status. If UOP less than 0.5 mL/kg/hr - Consider vasopressin or norepinephrine to maintain MAP if patient is hypotensive but not hypovolemic
  • Obtain pre-HIPEC chemistries (Na+, K+, Mg2+, Ca2+)[10]
HIPEC Phase
  • Maintain good muscle relaxation
  • Intra-abdominal pressure may be elevated up to 26 mm Hg
    • Maintain abdominal perfusion pressure of >60 (MAP – IAP)
  • Manage ventilation to maintain normocarbia and normoxia
  • Avoid hypervolemia during high volume resuscitation
  • Check ABG and base deficit q30min to q1hour
    • Treat hyperglycemia (>200) with insulin drip
    • Treat hyponatremia
      • Diuretics for hypervolemia
      • Volume resuscitate for hypovolemia; consider hypertonic saline if Na<130
  • Check electrolytes (Na+, K+, Mg2+, Ca2+) during HIPEC phase
  • Continue to check coagulation factors q4 hour
  • Goal intraperitoneal tissue temperature: 41-43 °C
  • Watch for core temperature >39.5 °C
    • Consider passive cooling vs active cooling with ice
    • Consider cooling intraperitoneal fluids
  • Cisplatin Perfusion ONLY:
    • sodium thiosulfate bolus at start of chemoperfusion
    • Sodium thiosulfate drip starts immediately after bolus over 12 hrs
    • Crystalloid (avoid NS) to maintain urine output > 100mL/hr through the end of case and into PACU / ICU

Emergence

  • After fascia is closed, check twitches and reverse paralysis
  • Plan for extubation if hemodynamically stable, normothermic and normoxic.

Postoperative management

Disposition

  • Admit to ICU (consider discussion with ICU team and surgeon beforehand)
  • UOP Goals: UOP 100 mL/hr (for Cisplatin only)
  • May require pressors due to prolonged vasoplegia postoperatively
  • Continue Sodium thiosulfate drip over 12 hours from start of perfusion (for cisplatin only)

Pain management

  • PCEA
  • IV acetaminophen
  • ketoralac (if perfusion with MMC, no pre-existing kidney disease)

Potential complications

  • variable
  • surgical complications: anastomotic leakage, bleeding, infection;
  • medical / chemo-related: myelosuppression (MMC),
  • nephrotoxicity (Cisplatin)

Procedure variants

Open Abdominal

Perfusion

Closed Abdominal

Perfusion

Peritoneal Cavity

Expander

Unique considerations Decreased exposure and inhalation of chemotherapeutic agents

High intrabdominal pressures

Position Supine or low-lithotomy
Surgical time Variable, dependent on extent of tumor and resection
Perfusion Time Cisplatin: 90 minutes

MMC: 100 minutes

EBL Variable, dependent on extent of tumor and resection
Postoperative disposition ICU
Pain management PCEA, IV acetaminophen

Consider ketoralac if:

  • Perfusion with MMC
  • No kidney disease
Potential complications Surgical complications:
  • Anastomotic leakage
  • Bleeding
  • Infection

Medical / chemo-related:

  • Myelosuppression (MMC)
  • Nephrotoxicity (Cisplatin)

Enhanced Recovery After Surgery

Attribute Mayo Clinic[11]
Nutrition Protein and carbohydrate supplementation
Intravenous Fluids Goal directed (UOP of 0.5 mL/kg/h)
Pain Control Multimodal pain therapy + TAP block
Oral Intake Clear liquid on POD 0

No NGT tube

Drains & Tubes Only when indicated
Post-op Disposition Step-down unit

References

  1. 1.0 1.1 1.2 1.3 1.4 Webb, Christopher Allen-John; Weyker, Paul David; Moitra, Vivek K.; Raker, Richard K. (2013). "An overview of cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion for the anesthesiologist". Anesthesia and Analgesia. 116 (4): 924–931. doi:10.1213/ANE.0b013e3182860fff. ISSN 1526-7598. PMID 23460568.
  2. Macrì, Antonio (2010-01-15). "New approach to peritoneal surface malignancies". World Journal of Gastrointestinal Oncology. 2 (1): 9–11. doi:10.4251/wjgo.v2.i1.9. ISSN 1948-5204. PMC 2999159. PMID 21160811.
  3. 3.0 3.1 Schmidt, C.; Moritz, S.; Rath, S.; Grossmann, E.; Wiesenack, C.; Piso, P.; Graf, B. M.; Bucher, M. (2009-09-15). "Perioperative management of patients with cytoreductive surgery for peritoneal carcinomatosis". Journal of Surgical Oncology. 100 (4): 297–301. doi:10.1002/jso.21322. ISSN 1096-9098. PMID 19697426.
  4. Al-Shammaa, Hassan-Alaa-Hammed; Li, Yan; Yonemura, Yutaka (2008-02-28). "Current status and future strategies of cytoreductive surgery plus intraperitoneal hyperthermic chemotherapy for peritoneal carcinomatosis". World Journal of Gastroenterology. 14 (8): 1159–1166. doi:10.3748/wjg.14.1159. ISSN 1007-9327. PMC 2690662. PMID 18300340.
  5. Rodríguez Silva, Cristina; Moreno Ruiz, Francisco Javier; Bellido Estévez, Inmaculada; Carrasco Campos, Joaquin; Titos García, Alberto; Ruiz López, Manuel; González Poveda, Ivan; Toval Mata, Jose Antonio; Mera Velasco, Santiago; Santoyo Santoyo, Julio (2017-02-21). "Are there intra-operative hemodynamic differences between the Coliseum and closed HIPEC techniques in the treatment of peritoneal metastasis? A retrospective cohort study". World Journal of Surgical Oncology. 15 (1): 51. doi:10.1186/s12957-017-1119-2. ISSN 1477-7819. PMC 5320712. PMID 28222738.
  6. Witkamp, A. J.; de Bree, E.; Van Goethem, R.; Zoetmulder, F. A. (2001). "Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy". Cancer Treatment Reviews. 27 (6): 365–374. doi:10.1053/ctrv.2001.0232. ISSN 0305-7372. PMID 11908929.
  7. González-Moreno, Santiago; González-Bayón, Luis; Ortega-Pérez, Gloria (2012). "Hyperthermic intraperitoneal chemotherapy: methodology and safety considerations". Surgical Oncology Clinics of North America. 21 (4): 543–557. doi:10.1016/j.soc.2012.07.001. ISSN 1558-5042. PMID 23021715.
  8. Cancer chemotherapy and biotherapy : principles and practice. Bruce Chabner, Dan L. Longo (5th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. 2011. ISBN 1605474312. OCLC 751669717.CS1 maint: others (link)
  9. Seretis, Charalampos; Gill, Jagjit; Malik, Adnan; Elhassan, Ali Mohamed; Shariff, Umar; Youssef, Haney (2020-12). "Low Preoperative Serum Albumin Levels Are Associated With Impaired Outcome After Cytoreductive Surgery and Perioperative Intraperitoneal Chemotherapy for Peritoneal Surface Malignancies". Journal of Clinical Medicine Research. 12 (12): 773–779. doi:10.14740/jocmr4362. ISSN 1918-3003. PMC 7781284. PMID 33447310. Check date values in: |date= (help)
  10. Rothfield, Kenneth P.; Crowley, Kathy (2012). "Anesthesia considerations during cytoreductive surgery and hyperthermic intraperitoneal chemotherapy". Surgical Oncology Clinics of North America. 21 (4): 533–541. doi:10.1016/j.soc.2012.07.003. ISSN 1558-5042. PMID 23021714.
  11. Webb, Christopher; Day, Ryan; Velazco, Cristine S.; Pockaj, Barbara A.; Gray, Richard J.; Stucky, Chee-Chee; Young-Fadok, Tonia; Wasif, Nabil (2020). "Implementation of an Enhanced Recovery After Surgery (ERAS) Program is Associated with Improved Outcomes in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy". Annals of Surgical Oncology. 27 (1): 303–312. doi:10.1245/s10434-019-07900-z. ISSN 1534-4681. PMID 31605328.