Diabetes mellitus

From WikiAnesthesia
Revision as of 07:27, 13 July 2021 by Nirav Kamdar (talk | contribs) (Changes in pre-op optimization)
Diabetes mellitus
Anesthetic relevance

High

Anesthetic management

Preoperative HgA1c value Preoperative glucose value Preoperative medication adjustment Insulin administration Post-operative glucose

Specialty

Endocrine

Signs and symptoms

Excessive thirst Polyuria Polydypsia Glucosuria Peripheral neuropathy Ocular degeneration Cardiovascular disease

Diagnosis

HgA1c Fasting glucose

Treatment

Oral anti-hyperglycemics Exogenous insulin administration

Article quality
Editor rating
Unrated
User likes
0

Diabetes is an endocrine, metabolic disorder marked by high levels of blood glucose. Three classifications of diabetics exist:

  1. Type 1 Diabetes, where an immune mediated destruction of pancreatic beta cells occurs causing a total reduction in endogenous insulin and thus causing hyperglycemia
  2. Type II Diabetes, where patients experience increasing insulin resistance for the level of endogenous insulin thus causing hyperglycemia
  3. Gestational Diabetes in which hyperglycemia occurs in the second or third trimester of pregnancy.

The diagnosis of diabetes is made based on fasting blood glucose levels and hemoglobin A1c levels. The diabetic population in the United States is both increasing in incidence and prevalence within the last decade. This disease affects multiple organ systems that have anesthetic implications including cardiovascular health, renal disease, peripheral neurologic function, and gastrointestinal emptying requiring preoperative optimization and intraoperative control.

Cystic fibrosis patients have an acquired form of diabetes as the most common co-morbidity of cystic fibrosis (20% of adolescents and 40-50% of adults).[1]

Anesthetic implications

Preoperative optimization

  • No overt indications for case cancellations for poorly controlled diabetes except if patients are in diabetes ketoacidosis (DKA) or hyperosmolar osmotic non-ketotic crisis (HONK)
  • Postoperative blood glucose greater than 140 mg/dL is found in as many as 40% of patient undergoing non-cardiac surgery and almost 25% of those patients demonstrate a blood glucose greater than 180 mg/dL during the operative and immediate post-operative period[2][3]
  • Data shows mixed reduction of mortality with good blood glucose control in surgical patients[4], but a reduction in surgical site infection risk[5]
  • Consider case delay alongside surgery team if BG > 250 mg/dL and case is elective and a prothesis or synthetic biofilm will be inserted into the patient during surgery (i.e. prothesis, intraocular lens, joint replacement, graft, etc).
  • Obtain pre-operative HgA1c if one has not been obtained via primary care in last 3 months prior to surgery
    • If HgA1c > 8.0 - evidence shows greater incidence of post-operative hyperglycemia during patient recovery
Pre-operative medication adjustments:

Intraoperative management

Postoperative management

Related surgical procedures

Pathophysiology

Signs and symptoms

Diagnosis

Diagnosis of diabetes can be made by a variety of ways:

  1. Fasting plasma glucose ≥ 126mg/dL
  2. Two-hour plasma glucose ≥ 200mg/dL
  3. A1C ≥ 6.5 prior to initiating anti-hyperglycemic medications

Treatment

Medication

Surgery

Prognosis

Epidemiology

The diabetic population in the United States is both increasing in incidence and prevalence within the last decade. According to the 2017 National Diabetes Statistics Report from the Center for Disease Control (CDC), 10.5% of the U.S. population has diabetes with an estimated 21.4% of those who have the disease are still not diagnosed.[6]

References

  1. Association, American Diabetes (2021-01-01). "2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021". Diabetes Care. 44 (Supplement 1): S15–S33. doi:10.2337/dc21-S002. ISSN 0149-5992. PMID 33298413.
  2. Frisch, A.; Chandra, P.; Smiley, D.; Peng, L.; Rizzo, M.; Gatcliffe, C.; Hudson, M.; Mendoza, J.; Johnson, R.; Lin, E.; Umpierrez, G. E. (2010-08-01). "Prevalence and Clinical Outcome of Hyperglycemia in the Perioperative Period in Noncardiac Surgery". Diabetes Care. 33 (8): 1783–1788. doi:10.2337/dc10-0304. ISSN 0149-5992. PMC 2909062. PMID 20435798.CS1 maint: PMC format (link)
  3. Levetan, C. S.; Passaro, M.; Jablonski, K.; Kass, M.; Ratner, R. E. (1998-02-01). "Unrecognized Diabetes Among Hospitalized Patients". Diabetes Care. 21 (2): 246–249. doi:10.2337/diacare.21.2.246. ISSN 0149-5992.
  4. Buchleitner, Ana Maria; Martínez-Alonso, Montserrat; Hernández, Marta; Solà, Ivan; Mauricio, Didac (2012-09-12). Cochrane Metabolic and Endocrine Disorders Group (ed.). "Perioperative glycaemic control for diabetic patients undergoing surgery". Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD007315.pub2.
  5. Kroin, Jeffrey S.; Buvanendran, Asokumar; Li, Jinyuan; Moric, Mario; Im, Hee-Jeong; Tuman, Kenneth J.; Shafikhani, Sasha H. (2015-06). "Short-Term Glycemic Control Is Effective in Reducing Surgical Site Infection in Diabetic Rats:". Anesthesia & Analgesia. 120 (6): 1289–1296. doi:10.1213/ANE.0000000000000650. ISSN 0003-2999. Check date values in: |date= (help)
  6. "National Diabetes Statistics Report, 2020 | CDC". www.cdc.gov. 2020-09-28. Retrieved 2021-07-12.